Numerical Methods for Nonlinear Variational Problems - Roland Glowinski

Numerical Methods for Nonlinear Variational Problems

Buch | Softcover
XVII, 493 Seiten
2013 | 1. Softcover reprint of the original 1st ed. 1984
Springer Berlin (Verlag)
978-3-662-12615-8 (ISBN)
106,99 inkl. MwSt

Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications.

"Numerical Methods for Nonlinear Variational Problems", originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.

I Generalities on Elliptic Variational Inequalities and on Their Approximation.- II Application of the Finite Element Method to the Approximation of Some Second-Order EVI.- III On the Approximation of Parabolic Variational Inequalities.- IV Applications of Elliptic Variational Inequality Methods to the Solution of Some Nonlinear Elliptic Equations.- V Relaxation Methods and Applications.- VI Decomposition-Coordination Methods by Augmented Lagrangian: Applications.- VII Least-Squares Solution of Nonlinear Problems: Application to Nonlinear Problems in Fluid Dynamics.- Appendix I A Brief Introduction to Linear Variational Problems.- 1. Introduction.- 2. A Family of Linear Variational Problems.- 3. Internal Approximation of Problem (P).- 4. Application to the Solution of Elliptic Problems for Partial Differential Operators.- 5. Further Comments: Conclusion.- Appendix II A Finite Element Method with Upwinding for Second-Order Problems with Large First Order Terms.- 1. Introduction.- 2. The Model Problem.- 3. A Centered Finite Element Approximation.- 4. A Finite Element Approximation with Upwinding.- 5. On the Solution of the Linear System Obtained by Upwinding.- 6. Numerical Experiments.- 7. Concluding Comments.- Appendix III Some Complements on the Navier-Stokes Equations and Their Numerical Treatment.- 1. Introduction.- 4. Further Comments on the Boundary Conditions.- 5. Decomposition Properties of the Continuous and Discrete Stokes Problems of Sec. 4. Application to Their Numerical Solution.- 6. Further Comments.- Some Illustrations from an Industrial Application.- Glossary of Symbols.- Author Index.

Erscheint lt. Verlag 3.10.2013
Reihe/Serie Scientific Computation
Zusatzinfo XVII, 493 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 777 g
Themenwelt Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Applied mathematics • Approximation • Computational Physics • Finite Element Method • finite elements • Fluid Dynamics • Fluids • Mathematics • Mechanics • Model • Navier-Stokes Equation • nonlinear variational problems • Numerical Methods • Operator • Optimization
ISBN-10 3-662-12615-X / 366212615X
ISBN-13 978-3-662-12615-8 / 9783662126158
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch

von Wilhelm Kulisch; Regine Freudenstein

Buch | Softcover (2024)
Wiley-VCH (Verlag)
39,99
für Studierende der Naturwissenschaften und Technik

von Paul A. Tipler; Peter Kersten; Gene Mosca

Buch | Hardcover (2024)
Springer Spektrum (Verlag)
79,99