Theory of Nonlinear Propagation of High Harmonics Generated in a Gaseous Medium

(Autor)

Buch | Hardcover
XIV, 159 Seiten
2013 | 2013
Springer International Publishing (Verlag)
978-3-319-01624-5 (ISBN)

Lese- und Medienproben

Theory of Nonlinear Propagation of High Harmonics Generated in a Gaseous Medium - Cheng Jin
106,99 inkl. MwSt
Providing a software package that allows realistic, comparable simulations of high-order harmonics spectra, this volume offers the theoretical tools to study high-order harmonic generation (HHG) by intense ultrafast infrared lasers in both atoms and molecules.

Theory of Nonlinear Propagation of High Harmonics Generated in a Gaseous Medium establishes the theoretical tools to study High-Order Harmonic Generation (HHG) by intense ultrafast infrared lasers in atoms and molecules. The macroscopic propagation of both laser and high-harmonic fields is taken into account by solving Maxwell's wave equations, while the single-atom or single-molecule response is treated with a quantitative rescattering theory by solving the time-dependent Schrödinger equation.

This book demonstrates for the first time that observed experimental HHG spectra of atoms and molecules can be accurately reproduced theoretically when precise experimental conditions are known. The macroscopic HHG can be expressed as a product of a macroscopic wave packet and a photorecombination cross section, where the former depends on laser and experimental conditions while the latter is the property of target atoms or molecules. The factorization makes it possible to retrieve microscopically atomic or molecular structure information from the measured macroscopic HHG spectra.

This book also investigates other important issues about HHG, such as contributions from multiple molecular orbitals, the minimum in the HHG spectrum, the spatial mode of laser beams, and the generation of an isolated attosecond pulse. Additionally, this book presents the photoelectron angular distribution of aligned molecules ionized by the HHG light.

Dr. Cheng Jin received his Ph.D. in Physics from Kansas State University in May 2012. He received the K-State Physics Meritorious Graduate Research Award for 2011-2012, and received recognition for significant contributions to knowledge base by K-State’s Graduate Student Council in 2010.

Introduction to High-Order Harmonic Generation.- Theoretical Tools.- Medium Propagation Effects in High-Order Harmonic Generation of Ar.- Comparison of High-Order Harmonic Generation of Ar Using a Truncated Bessel or a Gaussian Beam.- Generation of an Isolated Attosecond Pulse in the Far Field by Spatial Filtering with an Intense Few-Cycle Mid-Infrared Laser.- Effects of Macroscopic Propagation and Multiple Molecular Orbitals on the High-Order Harmonic Generation of Aligned N2 and CO2 Molecules.- Photoelectron Angular Distributions in Single-Photon Ionization of Aligned N2 and CO2 Molecules Using XUV Light.- Summary.

Erscheint lt. Verlag 24.9.2013
Reihe/Serie Springer Theses
Zusatzinfo XIV, 159 p. 56 illus., 55 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 432 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Plasmaphysik
Schlagworte attosecond pulses • Attosecond Pulse Train • Cooper Minimum • Experimental HHG Spectra • Gaussian beam • harmonic generation • High Harmonics • High-order Harmonic Generation • Infrared Laser • Isolated Attosecond Pulse • Macroscopic HHG • Macroscopic HHG Spectra • Macroscopic Propagation • Macroscopic Response • Macroscopic Wave Packet • Mid-Infrared laser • Multiple Molecular Orbiting • Phase Matching • Phase mismatch • Photoelectron Angular Distribution • Photorecombination Cross Section • Propagation Effects • QRS Theory • Quantitative Rescattering Theory • Shape Resonance • Single-Atom Response • Single-photon Ionization • Spatial Filtering • Strong-Field Approximation • Truncated Bessel Beam • ultrafast laser • Wavelength Scaling
ISBN-10 3-319-01624-5 / 3319016245
ISBN-13 978-3-319-01624-5 / 9783319016245
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich