Gauge/String Duality, Hot QCD and Heavy Ion Collisions - Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, Urs Achim Wiedemann

Gauge/String Duality, Hot QCD and Heavy Ion Collisions

Buch | Hardcover
465 Seiten
2014
Cambridge University Press (Verlag)
978-1-107-02246-1 (ISBN)
73,55 inkl. MwSt
This book provides a comprehensive introduction to gauge/string duality and its applications to the study of the thermal and transport properties of quark-gluon plasma. It is an ideal reference for students and researchers in string theory, quantum field theory, quantum many-body physics, heavy ion physics and lattice QCD.
Heavy ion collision experiments recreating the quark-gluon plasma that filled the microseconds-old universe have established that it is a nearly perfect liquid that flows with such minimal dissipation that it cannot be seen as made of particles. String theory provides a powerful toolbox for studying matter with such properties. This book provides a comprehensive introduction to gauge/string duality and its applications to the study of the thermal and transport properties of quark-gluon plasma, the dynamics of how it forms, the hydrodynamics of how it flows, and its response to probes including jets and quarkonium mesons. Calculations are discussed in the context of data from RHIC and LHC and results from finite temperature lattice QCD. The book is an ideal reference for students and researchers in string theory, quantum field theory, quantum many-body physics, heavy ion physics and lattice QCD.

Jorge Casalderrey-Solana is a Ramón y Cajal Researcher at the Universitat de Barcelona. His research focuses on the properties of QCD matter produced in ultra-relativistic heavy ion collisions. Hong Liu is an Associate Professor of Physics at the Massachusetts Institute of Technology. His research interests include quantum gravity and exotic quantum matter. David Mateos is ICREA Research Professor at the University of Barcelona, where he leads a group working on the connection between string theory and quantum chromodynamics. Krishna Rajagopal is a Professor of Physics at the Massachusetts Institute of Technology. His research focuses on QCD at high temperature or density, where new understanding can come from unexpected directions. Urs Achim Wiedemann is a Senior Theoretical Physicist at CERN, researching the theory and phenomenology of ultra-relativistic heavy ion collisions.

1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

Erscheint lt. Verlag 19.6.2014
Zusatzinfo 13 Halftones, color; 10 Line drawings, unspecified; 58 Line drawings, color
Verlagsort Cambridge
Sprache englisch
Maße 178 x 253 mm
Gewicht 1090 g
Themenwelt Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
ISBN-10 1-107-02246-0 / 1107022460
ISBN-13 978-1-107-02246-1 / 9781107022461
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
The Biggest Ideas in the Universe

von Sean Carroll

Buch | Hardcover (2024)
Dutton (Verlag)
25,80
Why Does Gravity Rule?

von CLOSE

Buch | Hardcover (2024)
Oxford University Press (Verlag)
21,15