Probabilistic Search for Tracking Targets (eBook)
352 Seiten
John Wiley & Sons (Verlag)
978-1-118-59704-0 (ISBN)
for a search for static or moving targets in discrete time and
space.
Probabilistic Search for Tracking Targets uses an
information-theoretic scheme to present a unified approach for
known search methods to allow the development of new algorithms of
search. The book addresses search methods under different
constraints and assumptions, such as search uncertainty under
incomplete information, probabilistic search scheme, observation
errors, group testing, search games, distribution of search
efforts, single and multiple targets and search agents, as well as
online or offline search schemes. The proposed approach is
associated with path planning techniques, optimal search
algorithms, Markov decision models, decision trees, stochastic
local search, artificial intelligence and heuristic
information-seeking methods. Furthermore, this book presents novel
methods of search for static and moving targets along with
practical algorithms of partitioning and search and screening.
Probabilistic Search for Tracking Targets includes
complete material for undergraduate and graduate courses in modern
applications of probabilistic search, decision-making and group
testing, and provides several directions for further research in
the search theory.
The authors:
* Provide a generalized information-theoretic approach to the
problem of real-time search for both static and moving targets over
a discrete space.
* Present a theoretical framework, which covers known
information-theoretic algorithms of search, and forms a basis for
development and analysis of different algorithms of search over
probabilistic space.
* Use numerous examples of group testing, search and path
planning algorithms to illustrate direct implementation in the form
of running routines.
* Consider a relation of the suggested approach with known search
theories and methods such as search and screening theory, search
games, Markov decision process models of search, data mining
methods, coding theory and decision trees.
* Discuss relevant search applications, such as quality-control
search for nonconforming units in a batch or a military search for
a hidden target.
* Provide an accompanying website featuring the algorithms
discussed throughout the book, along with practical implementations
procedures.
Eugene Kagan, Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Israel Irad Ben-Gal, Department of Industrial Engineering, Tel-Aviv University, Israel
List of figures xi
Preface xv
Notation and terms xvii
1 Introduction 1
1.1 Motivation and applications 4
1.2 General description of the search problem 5
1.3 Solution approaches in the literature 7
1.4 Methods of local search 11
1.5 Objectives and structure of the book 14
References 15
2 Problem of search for static and moving targets 19
2.1 Methods of search and screening 20
2.1.1 General definitions and notation 20
2.1.2 Target location density for a Markovian search 24
2.1.3 The search-planning problem 30
2.2 Group-testing search 55
2.2.1 General definitions and notation 56
2.2.2 Combinatorial group-testing search for static targets63
2.2.3 Search with unknown number of targets and erroneousobservations 71
2.2.4 Basic information theory search with known locationprobabilities 84
2.3 Path planning and search over graphs 108
2.3.1 General BF* and A* algorithms 109
2.3.2 Real-time search and learning real-time A* algorithm122
2.3.3 Moving target search and the fringe-retrieving A*algorithm 131
2.4 Summary 140
References 140
3 Models of search and decision making 145
3.1 Model of search based on MDP 146
3.1.1 General definitions 146
3.1.2 Search with probabilistic and informational decision rules152
3.2 Partially observable MDP model and dynamic programmingapproach 161
3.2.1 MDP with uncertain observations 162
3.2.2 Simple Pollock model of search 166
3.2.3 Ross model with single-point observations 174
3.3 Models of moving target search with constrained paths179
3.3.1 Eagle model with finite and infinite horizons 180
3.3.2 Branch-and-bound procedure of constrained search withsingle searcher 184
3.3.3 Constrained path search with multiple searchers 189
3.4 Game theory models of search 192
3.4.1 Game theory model of search and screening 192
3.4.2 Probabilistic pursuit-evasion games 201
3.4.3 Pursuit-evasion games on graphs 206
3.5 Summary 214
References 215
4 Methods of information theory search 218
4.1 Entropy and informational distances between partitions219
4.2 Static target search: Informational LRTA* algorithm227
4.2.1 Informational LRTA* algorithm and its properties228
4.2.2 Group-testing search using the ILRTA* algorithm234
4.2.3 Search by the ILRTA* algorithm with multiplesearchers 244
4.3 Moving target search: Informational moving target searchalgorithm 254
4.3.1 The informational MTS algorithm and its properties 254
4.3.2 Simple search using the IMTS algorithm 260
4.3.3 Dependence of the IMTS algorithm's actions on thetarget's movement 269
4.4 Remarks on programming of the ILRTA* and IMTSalgorithms 270
4.4.1 Data structures 270
4.4.2 Operations and algorithms 282
4.5 Summary 290
References 290
5 Applications and perspectives 293
5.1 Creating classification trees by using the recursiveILRTA* algorithm 293
5.1.1 Recursive ILRTA* algorithm 294
5.1.2 Recursive ILRTA* with weighted distances andsimulation results 297
5.2 Informational search and screening algorithm with single andmultiple searchers 299
5.2.1 Definitions and assumptions 299
5.2.2 Outline of the algorithm and related functions 300
5.2.3 Numerical simulations of search with single and multiplesearchers 304
5.3 Application of the ILRTA* algorithm for navigation ofmobile robots 305
5.4 Application of the IMTS algorithm for paging in cellularnetworks 310
5.5 Remark on application of search algorithms for group testing312
References 313
6 Final remarks 316
References 317
Index 319
Erscheint lt. Verlag | 25.3.2013 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften | |
Technik ► Maschinenbau | |
Schlagworte | Applied Mathematics in Engineering • Applied Mathmatics in Engineering • Data Mining • Data Mining Statistics • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mathematics • Mathematik • Mathematik in den Ingenieurwissenschaften • Signal Processing • Signalverarbeitung • Statistics • Statistik |
ISBN-10 | 1-118-59704-4 / 1118597044 |
ISBN-13 | 978-1-118-59704-0 / 9781118597040 |
Haben Sie eine Frage zum Produkt? |
Größe: 19,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich