Painleve Equations in the Differential Geometry of Surfaces - Alexander I. Bobenko TU Berlin, Ulrich Eitner

Painleve Equations in the Differential Geometry of Surfaces

Buch | Softcover
IV, 120 Seiten
2000 | 2000
Springer Berlin (Verlag)
978-3-540-41414-8 (ISBN)
37,40 inkl. MwSt
Since the time of surfaces -+ in differential Gauss, parametrized (x, y) P(x, y) have been described a frame attached to the moving geometry through TI(x, y) surface. One introduces the Gauss- which linear dif- Weingarten equations are , ferential equations = U = TIX T1, VT', !PY (1. for the and their condition frame, compatibility - = V + [U, V] 0, UY (1.2) which the Gauss-Codazzi For surfaces in three-dim- represents equations . a sional Euclidean the frame T1 lies in the usually or space, group SO(3) SU(2). On the other a of a non-linear in the form hand, representation equation (1.2) is the of the of of starting point theory integrable equations (theory solitons), which in mathematical in the 1960's appeared physics [NMPZ, AbS, CD, FT, More the differential for the coefficients of AbC]. exactly, partial equation (1.2) the matrices U and V is considered to be if these matrices can be integrable , extended to U V non-trivially a one-parameter family (x, y, A), (x, y, A) satisfying - = + U(A)y V(A). [U(A), V(A)] 0, (1-3) so that the differential is and original partial equation preserved.' . Usually U(A) V are rational functions of the which is called the (A) parameter A, spectral param- In soliton the eter is called the Lax . theory, representation (1.3) representation the Zakharov-Shabat or representation [ZS].

1. Introduction.- 2. Basics on Painlevé Equations and Quaternionic Description of Surfaces.- 3. Bonnet Surfaces in Euclidean Three-space.- 4. Bonnet Surfaces in S3 and H3 and Surfaces with Harmonic Inverse Mean Curvature.- 5. Surfaces with Constant Curvature.- 6. Appendices.

Erscheint lt. Verlag 12.12.2000
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo IV, 120 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 191 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte 30D05 • 34-02 • 35Q53 • 53-02 • 53A05 • 53A15 • 53C42 • Bonnet surfaces • Curvature • Differential Geometry • differential geometry of surfaces • Gaussian curvature • Integrable Systems • mean curvature • Painleve equations
ISBN-10 3-540-41414-2 / 3540414142
ISBN-13 978-3-540-41414-8 / 9783540414148
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich