Mathematical Methodologies in Pattern Recognition and Machine Learning (eBook)
VIII, 196 Seiten
Springer New York (Verlag)
978-1-4614-5076-4 (ISBN)
This volume features key contributions from the International Conference on Pattern Recognition Applications and Methods, (ICPRAM 2012,) held in Vilamoura, Algarve, Portugal from February 6th-8th, 2012. The conference provided a major point of collaboration between researchers, engineers and practitioners in the areas of Pattern Recognition, both from theoretical and applied perspectives, with a focus on mathematical methodologies. Contributions describe applications of pattern recognition techniques to real-world problems, interdisciplinary research, and experimental and theoretical studies which yield new insights that provide key advances in the field.
This book will be suitable for scientists and researchers in optimization, numerical methods, computer science, statistics and for differential geometers and mathematical physicists.
This volume features key contributions from the International Conference on Pattern Recognition Applications and Methods, (ICPRAM 2012,) held in Vilamoura, Algarve, Portugal from February 6th-8th, 2012. The conference provided a major point of collaboration between researchers, engineers and practitioners in the areas of Pattern Recognition, both from theoretical and applied perspectives, with a focus on mathematical methodologies. Contributions describe applications of pattern recognition techniques to real-world problems, interdisciplinary research, and experimental and theoretical studies which yield new insights that provide key advances in the field. This book will be suitable for scientists and researchers in optimization, numerical methods, computer science, statistics and for differential geometers and mathematical physicists.
On order equivalences between distance and similarity measures on sequences and trees.- Scalable Corpus Annotation by Graph Construction and Label Propagation.- Computing the reeb graph for triangle meshes with active contours.- Efficient Computation of Voronoi Neighbors based on Polytope search in Pattern Recognition.- Estimation of the common oscillation for Phase Locked Matrix Factorization.- ASSET: Approximate Stochastic Subgradient Estimation Training for Support Vector Machines.- Pitch-sensitive Components emerge from Hierarchical Sparse Coding of Natural Sounds.- Generative Embeddings based on Rican Mixtures: Application to KernelBased Discriminative Classification of Magnetic Resonance Images.-Single-Frame Signal Recovery Using a Similarity-Prior Based on Pearson Type VII MRF.- Tracking solutions of time varying linear inverse problems.- Stacked Conditional Random Fields Exploiting Structural Consistencies.- Segmentation of Vessel Geometries from Medical Images using GPF Deformable Model.- Robust Deformable Model for Segmenting the Left Ventricle in 3D volumes of Ultrasound Data.- Algorithm to maintain linear element in 3D Level Set Topology Optimization.- Facial Expression recognition using Log-Euclidean statistical shape models.
Erscheint lt. Verlag | 9.11.2012 |
---|---|
Reihe/Serie | Springer Proceedings in Mathematics & Statistics | Springer Proceedings in Mathematics & Statistics |
Zusatzinfo | VIII, 196 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften | |
Technik | |
Schlagworte | Hierarchical Sparse Coding • ICPRAM 2012 • machine learning • pattern recognition • Support Vector Machines |
ISBN-10 | 1-4614-5076-4 / 1461450764 |
ISBN-13 | 978-1-4614-5076-4 / 9781461450764 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich