Grundlagen der Elektrochemie

Buch | Softcover
XI, 216 Seiten
2000 | 1996
Springer Berlin (Verlag)
978-3-540-67045-2 (ISBN)

Lese- und Medienproben

Grundlagen der Elektrochemie - Wolfgang Schmickler
49,99 inkl. MwSt
Die Elektrochemie ist eines der ältesten und - nicht zuletzt wegen ihrer Anwendungen in der Energietechnik - aktuellsten Gebiete der Physikalischen Chemie. Als wahrhaft interdisziplinäre Wissenschaft hat sie viele Aspekte mit den Oberflächenwissenschaften und der physikalischen Chemie von Festkörpern und Flüssigkeiten gemein. Dieser Band bietet eine Einführung in die Strukturen und Prozesse an Metall- und Halbleiterelektroden, wobei die Ergebnisse neuerer Strukturuntersuchungen genau so berücksichtigt werden wie die älteren thermodynamischen und kinetischen Aspekte. Abgerundet wird diese moderne Darstellung durch Kapitel über die Phasengrenze zwischen zwei Flüssigkeiten und die Grundlagen elektrochemischer Meßmethoden. TOC:Einleitung - Elektrolytlösungen - Das Elektrodenpotential - Die Phasengrenze Metall-Elektrolyt - Adsorption an Metallelektroden - Phänomenologische Behandlung der Elektronentransferreaktion - Theoretische Behandlung der Elektronentransferreaktionen - Die Phasengrenze Halbleiter/ Elektrolyt - Experimente zu Elektronentransferreaktionen - Protonen- und Ionentransferreaktionen - Metallabscheidung und -auflösung - Komplexe Reaktionen - Flüssig-flüssig Phasengrenzen - Thermodynamik flüssiger Elektroden - Stofftransport - Experimentelle Methoden - Instationäre Verfahren - Experimentelle Methoden - Konvektionsmethoden

Wolfgang Schmickler studied physics and chemistry at the Universities of Bonn and Heidelberg and at the Imperial College in London. In 1973 he received his PhD in Physical Chemistry from the University of Bonn. After completing his degree he received first a Liebig Fellowship from the German Association of the Chemical Industry and then a Heisenberg Fellowship from the German Reseach Foundation (DFG). He used the freedom that these fellowships offered him for extended visits at the Frumkin Institute in Moscow, the Laboratoire d Electrochimie Interfaciale du CNRS in Meudon, France, and the IBM Research Laboratory in San Jose, California, USA. For his work on the theory of the electric double layer he received the 2Bodenstein Award" of the Deutsche Bunsengesellschaft in 1985. He became an assistant professor at the University of Bonn in the same year, but moved to the United States in 1990, where he held the position of an Associate Professor at Utah State University in Logan. In 1992, he returned to Germany and took a faculty position at the University of Ulm, where he has been since. His research interests lie in theoretical electrochemistry; in recent years the focus of his work has been on electrocatalysis and electrode surface processes. He is a Fellow of the International Society of Electrochemistry, and Corresponding Scientist of the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina.

1 Einleitung.- 1.1 Die Phasengrenze Metall/Lösung.- 1.2 Potentiale in der Elektrochemie.- 1.3 Elektrochemisches Potential.- 2 Elektrolytlösungen.- 2.1 Struktur des Wassers.- 2.2 Solvatisierung von Ionen.- 2.3 Wechselwirkung zwischen den Ionen.- 3 Das Elektrodenpotential.- 3.1 Absolutes Elektrodenpotential.- 3.2 Meßanordnung mit drei Elektroden.- 4 Die Phasengrenze Metall-Elektrolyt.- 4.1 Ideal polarisierbare Elektroden.- 4.2 Die Gouy-Chapman-Theorie.- 4.3 Die Helmholtz-Kapazität.- 4.4 Das Potential des Ladungsnullpunkts.- 4.5 Oberflächenspannung und Ladungsnullpunkt.- 4.6 Ableitung der Gouy-Chapman-Kapazität.- 5 Adsorption an Metallelektroden.- 5.1 Adsorptionsphänomene.- 5.2 Adsorptionsisotherme.- 5.3 Das Dipolmoment adsorbierter Ionen.- 5.4 Die Struktur von Einkristalloberflächen.- 5.5 Adsorption von Iodid auf Pt(lll).- 5.6 Unterpotent ialabscheidung.- 5.7 Adsorption von organischen Molekülen.- 5.8 Elektrosorptions Wertigkeit.- 6 Phänomenologische Behandlung der Elektrontransferreaktionen.- 6.1 Reaktionen in der äußeren Sphäre.- 6.2 Die Butler-Volmer-Gleichung.- 6.3 Korrekturen für die Doppelschicht.- 6.4 Reaktionen in der inneren Sphäre.- 7 Theoretische Behandlung der Elektronentransferreaktionen.- 7.1 Qualitative Aspekte.- 7.2 Ein einfaches Modell.- 7.3 Elektronische Struktur der Elektrode.- 7.4 Gerischers Darstellung.- 7.5 Die Reorganisierungsenergie.- 8 Die Phasengrenze Halbleiter/Elektrolyt.- 8.1 Elektronische Struktur der Halbleiter.- 8.2 Potentialverlauf und Bandverbiegung.- 8.3 Elektronentransferreaktionen.- 8.3.1 Vorbetrachtungen.- 8.3.2 Theorie des Elektronentransfers.- 8.4 Photoinduzierter Elektronentransfer.- 8.4.1 Anregung der Elektrode.- 8.4.2 Anregung eines Redoxpaars.- 8.5 Zersetzung eines Halbleiters.- 9 Experimente zu Elektrontransferreaktionen.- 9.1 Die Gültigkeit der Butler-Volmer-Gleichung.- 9.2 Abweichungen von der Butler-Volmer-Gleichung.- 9.3 Adiabatische Elektronentransferreaktionen.- 9.4 Elektrochemische Eigenschaften von SnO2.- 9.5 Photoströme an einer WO3-Elektrode.- 10 Protonen- und Ionentransferreaktionen.- 10.1 Abhängigkeit vom Elektrodenpotential.- 10.2 Geschwindigkeitsbestimmender Schritt.- 10.3 Die WasserstofFentwicklung.- 10.4 Die Sauerstoffreduktion.- 10.5 Die Chlorentwicklung.- 10.6 Reaktionsgeschwindigkeit und Adsorptionsenergie.- 10.7 Ionen- und Elektronentransferreaktionen - ein Vergleich.- 11 Metallabscheidung und -auflösung.- 11.1 Morphologische Aspekte.- 11.2 Oberflächendiffusion.- 11.3 Keimbildung.- 11.4 Wachstum eines zweidimensionalen Films.- 11.5 Abscheidung auf gleichmäßig glatten Flächen.- 11.6 Metallauflösung und Passivierung.- 12 Komplexe Reaktionen.- 12.1 Aufeinanderfolgende elektrochemische Reaktionen.- 12.2 Elektrochemische Reaktionsordnung.- 12.3 Abscheidung von Silber in Gegenwart von Cyaniden.- 12.4 Mischpotentiale und Korrosion.- 13 Flüssig-flüssig Phasengrenzen.- 13.1 Die Phasengrenze zwischen zwei nicht mischbaren Flüssigkeiten.- 13.2 Verteilung der Ionen.- 13.3 Überführungsenergie eines einzelnen Ions.- 13.4 Eigenschaften der Doppelschicht.- 13.5 Elektronentransferreaktionen.- 13.6 Ionentransferreaktionen.- 13.7 Ein Modell für die flüssig-flüssig Phasengrenze.- 14 Thermodynamik flüssiger Elektroden.- 15 Stofftransport.- 15.1 Diffusion und Migration.- 15.2 Diffusiongesetze.- 15.3 Stofftransport zu einer Elektrode bei konstantem Strom.- 15.4 Stofftransport bei konstantem Elektrodenpotential.- 15.5 Sphärische Diffusion.- 16 Experimentelle Methoden - instationäre Verfahren.- 16.1 Überblick.- 16.2 Grundlagen der instationären Methoden.- 16.3 Potentiostatischer Puls.- 16.4 Galvanostatischer Puls.- 16.5 Zyklische Voltammetrie.- 16.6 Impedanzspektroskopie.- 16.7 Mikroelektroden.- 16.8 Polarographie.- 17 Experimentelle Methoden - Konvektionsmethoden.- 17.1 Die rotierende Scheibenelektrode.- 17.2 Turbulente Rohrströmung.- Abkürzungen.- Atomare Einheiten.- Sachwortverzeichnis.

Erscheint lt. Verlag 21.1.2000
Reihe/Serie Vieweg Lehrbuch Physikalische Chemie
Mitarbeit Assistent: M. Lingner
Zusatzinfo XI, 216 S.
Verlagsort Berlin
Sprache deutsch
Maße 155 x 235 mm
Gewicht 342 g
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Schlagworte 3528067551 • Elektrochemie
ISBN-10 3-540-67045-9 / 3540670459
ISBN-13 978-3-540-67045-2 / 9783540670452
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
59,95
Thermodynamik | Kinetik | Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

Buch | Hardcover (2021)
Wiley-VCH (Verlag)
85,90