Bayesian Analysis of Gene Expression Data (eBook)

eBook Download: PDF
2009 | 1. Auflage
252 Seiten
John Wiley & Sons (Verlag)
978-0-470-74281-5 (ISBN)

Lese- und Medienproben

Bayesian Analysis of Gene Expression Data - Bani K. Mallick, David Gold, Veera Baladandayuthapani
Systemvoraussetzungen
74,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The field of high-throughput genetic experimentation is evolving
rapidly, with the advent of new technologies and new venues for
data mining. Bayesian methods play a role central to the future of
data and knowledge integration in the field of Bioinformatics. This
book is devoted exclusively to Bayesian methods of analysis for
applications to high-throughput gene expression data, exploring the
relevant methods that are changing Bioinformatics. Case studies,
illustrating Bayesian analyses of public gene expression data,
provide the backdrop for students to develop analytical skills,
while the more experienced readers will find the review of advanced
methods challenging and attainable.

This book:

* Introduces the fundamentals in Bayesian methods of analysis for
applications to high-throughput gene expression data.

* Provides an extensive review of Bayesian analysis and advanced
topics for Bioinformatics, including examples that extensively
detail the necessary applications.

* Accompanied by website featuring datasets, exercises and
solutions.

Bayesian Analysis of Gene Expression Data offers a unique
introduction to both Bayesian analysis and gene expression, aimed
at graduate students in Statistics, Biomedical Engineers, Computer
Scientists, Biostatisticians, Statistical Geneticists,
Computational Biologists, applied Mathematicians and Medical
consultants working in genomics. Bioinformatics researchers from
many fields will find much value in this book.

Bani Mallick, Department of Statistics, Texas A&M University, USA. Veera Balandandayuthapani, Department of Biostatistics, Anderson Cancer Center, Texas, USA. David L. Gold, Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, USA.

Table of Notation.

1 Bioinformatics and Gene Expression Experiments.

1.1 Introduction.

1.2 About This Book.

2 Basic Biology.

2.1 Background.

2.1.1 DNA Structures and Transcription.

2.2 Gene Expression Microarray Experiments.

3 Bayesian Linear Models for Gene Expression.

3.1 Introduction.

3.2 Bayesian Analysis of a Linear Model.

3.3 Bayesian Linear Models for Differential Expression.

3.4 Bayesian ANOVA for Gene Selection.

3.5 Robust ANOVA model with Mixtures of SingularDistributions.

3.6 Case Study.

3.7 Accounting for Nuisance Effects.

3.8 Summary and Further Reading.

4 Bayesian Multiple Testing and False Discovery RateAnalysis.

4.1 Introduction to Multiple Testing.

4.2 False Discovery Rate Analysis.

4.3 Bayesian False Discovery Rate Analysis.

4.4 Bayesian Estimation of FDR.

4.5 FDR and Decision Theory.

4.6 FDR and bFDR Summary.

5 Bayesian Classification for Microarray Data.

5.1 Introduction.

5.2 Classification and Discriminant Rules.

5.3 Bayesian Discriminant Analysis.

5.4 Bayesian Regression Based Approaches to Classification.

5.5 Bayesian Nonlinear Classification.

5.6 Prediction and Model Choice.

5.7 Examples.

5.8 Discussion.

6 Bayesian Hypothesis Inference for Gene Classes.

6.1 Interpreting Microarray Results.

6.2 Gene Classes.

6.3 Bayesian Enrichment Analysis.

6.4 Multivariate Gene Class Detection.

6.5 Summary.

7 Unsupervised Classification and BayesianClustering.

7.1 Introduction to Bayesian Clustering for Gene ExpressionData.

7.2 Hierarchical Clustering.

7.3 K-Means Clustering.

7.4 Model-Based Clustering.

7.5 Model-Based Agglomerative Hierarchical Clustering.

7.6 Bayesian Clustering.

7.7 Principal Components.

7.8 Mixture Modeling.

7.8.1 Label Switching.

7.9 Clustering Using Dirichlet Process Prior.

7.9.1 Infinite Mixture of Gaussian Distributions.

8 Bayesian Graphical Models.

8.1 Introduction.

8.2 Probabilistic Graphical Models.

8.3 Bayesian Networks.

8.4 Inference for Network Models.

9 Advanced Topics.

9.1 Introduction.

9.2 Analysis of Time Course Gene Expression Data.

9.3 Survival Prediction Using Gene Expression Data.

Appendix A: Basics of Bayesian Modeling.

A.1 Basics.

A.1.1 The General Representation Theorem.

A.1.2 Bayes' Theorem.

A.1.3 Models Based on Partial Exchangeability.

A.1.4 Modeling with Predictors.

A.1.5 Prior Distributions.

A.1.6 Decision Theory and Posterior and PredictiveInferences.

A.1.7 Predictive Distributions.

A.1.8 Examples.

A.2 Bayesian Model Choice.

A.3 Hierarchical Modeling.

A.4 Bayesian Mixture Modeling.

A.5 Bayesian Model Averaging.

Appendix B: Bayesian Computation Tools.

B.1 Overview.

B.2 Large-Sample Posterior Approximations.

B.2.1 The Bayesian Central Limit Theorem.

B.2.2 Laplace's Method.

B.3 Monte Carlo Integration.

B.4 Importance Sampling.

B.5 Rejection Sampling.

B.6 Gibbs Sampling.

B.7 The Metropolis Algorithm and Metropolis-Hastings.

B.8 Advanced Computational Methods.

B.8.1 Block MCMC.

B.8.2 Truncated Posterior Spaces.

B.8.3 Latent Variables and the Auto-Probit Model.

B.8.4 Bayesian Simultaneous Credible Envelopes.

B.8.5 Proposal Updating.

B.9 Posterior Convergence Diagnostics.

B.10 MCMC Convergence and the Proposal.

B.10.1 Graphical Checks for MCMC Methods.

B.10.2 Convergence Statistics.

B.10.3 MCMC in High-Throughput Analysis.

B.11 Summary.

References.

Index.

"The target audience for this book is clearly
statisticians rather than biologists ... It does provide a very
useful overview of statistical genomics for anyone working in the
field." (The Quarterly Review of Biology, 1
March 2012)

"Bioinformatics researchers from many fields will find much
value in this book." (Mathematical Reviews, 2011)

"Experienced readers will find the review of advanced methods
for bioinformatics challenging and attainable. This book will
interest graduate students in statistics and bioinformatics
researchers from many fields." (Book News, December
2009)

Erscheint lt. Verlag 20.7.2009
Reihe/Serie Statistics in Practice
Statistics in Practice
Sprache englisch
Themenwelt Informatik Weitere Themen Bioinformatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik
Schlagworte Bayessches Verfahren • Biowissenschaften • Genetics • Genetik • Life Sciences • Probability & Mathematical Statistics • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 0-470-74281-X / 047074281X
ISBN-13 978-0-470-74281-5 / 9780470742815
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Introduction to Extant Primates

von Friderun Ankel-Simons

eBook Download (2024)
Elsevier Science (Verlag)
175,00