What is Integrability?
Seiten
1991
Springer Berlin (Verlag)
978-3-540-51964-5 (ISBN)
Springer Berlin (Verlag)
978-3-540-51964-5 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
This monograph deals with integrable dynamic systems with an infinite number of degrees of freedom. Leading scientists were invited to discuss the notion of integrability with two main points in mind: a presentation of the various recently elaborated methods for determining whether a given system is integrable or not, and an understanding of the increasingly more important role of integrable systems in modern applied mathematics and theoretical physics. Topics dealt with include: the applicability and integrability of 'universal' nonlinear wave models (Calogero); perturbation theory for translational invariant nonlinear Hamiltonian systems (in 2+1d) with an additional integral of motion (Zakharov, Schulman); the role of the Painleve test for ordinary (Ercolani, Siggia) and partial differential (Newell, Tabor) equations; the theory of integrable maps in a plane (Veselov); and the theory of KdV equation with non-vanishing boundary conditions at infinity (Marchenko).
Reihe/Serie | Springer Series in Nonlinear Dynamics |
---|---|
Zusatzinfo | 1 fig. |
Sprache | deutsch |
Gewicht | 616 g |
Einbandart | gebunden |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik |
Schlagworte | Dynamisches System • HC/Physik, Astronomie/Theoretische Physik |
ISBN-10 | 3-540-51964-5 / 3540519645 |
ISBN-13 | 978-3-540-51964-5 / 9783540519645 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Concepts and Applications
Buch | Softcover (2022)
John Wiley & Sons Inc (Verlag)
45,90 €