An Introduction to Lorentz Surfaces
Seiten
1996
|
1. Reprint 2011
De Gruyter (Verlag)
978-3-11-014333-1 (ISBN)
De Gruyter (Verlag)
978-3-11-014333-1 (ISBN)
Das Buch bietet eine systematische und detaillierte Einführung in die Theorie der Lorentzflächen. Aufbauend auf den Grundlagenkenntnissen der Differentialgeometrie, mengentheoretischen Topologie und komplexen Analysis wird die Theorie bis zu neuesten Erkenntnissen entwickelt.
Das Buch wendet sich nicht nur an Mathematiker, vor allem Differentialgeometer, sondern auch an theoretische Physiker, die auf den Gebieten Relativitätstheorie und Kosmologie arbeiten.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Das Buch wendet sich nicht nur an Mathematiker, vor allem Differentialgeometer, sondern auch an theoretische Physiker, die auf den Gebieten Relativitätstheorie und Kosmologie arbeiten.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
"The reviewer would recommend this monograph to anyone looking for an introduction to the geometry of Lorentz surfaces and especially to Kulkarni's conformal boundary for a Lorentz surface." Mathematical Reviews
"According to the reviewer's opinion, the author certainly succeeds in her goal: "The text outlines much of what is known about Lorentz surfaces. The book is written to make an emerging field accessible to graduate students and professionals alike"." Zentralblatt für Mathematik
Erscheint lt. Verlag | 12.7.1996 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics ; 22 |
Zusatzinfo | 51 b/w ill. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 564 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Naturwissenschaften ► Physik / Astronomie | |
Schlagworte | . • Addition • Allgemeines, Lexika • APANASOV • A.PHYSICS • Applied mathematics • Differentialgeometrie • Generalized spaces • Geometry • Geometry and Topology • GEOMETRY,TOPOLOGY • Hardcover, Softcover / Mathematik/Allgemeines, Lexika • HC/Mathematik/Geometrie • Lorentz-Fläche • Lorentz-Flächen • Lorentz groups • Mathematics • Topology |
ISBN-10 | 3-11-014333-X / 311014333X |
ISBN-13 | 978-3-11-014333-1 / 9783110143331 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich