Bayesian Probability Theory - Wolfgang von der Linden, Volker Dose, Udo Von Toussaint

Bayesian Probability Theory

Applications in the Physical Sciences
Buch | Hardcover
649 Seiten
2014
Cambridge University Press (Verlag)
978-1-107-03590-4 (ISBN)
108,45 inkl. MwSt
Covering all aspects of probability theory, statistics and data analysis from a Bayesian perspective, this book is ideal for graduate students and researchers. It presents the roots, applications and numerical implementation of probability theory, covers advanced topics and features real-world problems.
From the basics to the forefront of modern research, this book presents all aspects of probability theory, statistics and data analysis from a Bayesian perspective for physicists and engineers. The book presents the roots, applications and numerical implementation of probability theory, and covers advanced topics such as maximum entropy distributions, stochastic processes, parameter estimation, model selection, hypothesis testing and experimental design. In addition, it explores state-of-the art numerical techniques required to solve demanding real-world problems. The book is ideal for students and researchers in physical sciences and engineering.

Wolfgang von der Linden is Professor for Theoretical and Computational Physics at the Graz University of Technology. His research area is statistical physics with focus on strongly correlated quantum-many-body physics, based on computational techniques. Volker Dose is a former Director of the surface physics division of the Max Planck Institute for plasma physics. He has contributed to Bayesian methods in physics, astronomy and climate research. Udo von Toussaint is a Senior Scientist in the material research division of the Max Planck Institute for plasma physics, where he works on Bayesian experimental design, data fusion, molecular dynamics and inverse problems in the field of plasma-wall interactions.

Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer–Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

Erscheint lt. Verlag 12.6.2014
Zusatzinfo 128 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 180 x 263 mm
Gewicht 1300 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
ISBN-10 1-107-03590-2 / 1107035902
ISBN-13 978-1-107-03590-4 / 9781107035904
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95