Applied Electromagnetics -  Parton

Applied Electromagnetics

(Autor)

Buch | Softcover
288 Seiten
2012 | Softcover reprint of the original 1st ed. 1986
Springer-Verlag New York Inc.
978-1-4684-0620-7 (ISBN)
53,49 inkl. MwSt
Electromagnetic theory has been a basic subject taught for more than a century to physics students but not to the electrical-engineering student. Before the Second World War the engineer was weil grounded in circuit theory but was notoriously weak in field theory; by and large he might have heard of Maxwell's equations but he certainly did not use them. Since the Second World War, many fac. tors have greatly changed the engineer's outlook; particularly the astonishing advances in electronics, in communications (particularly microwaves) and more recently in solid-state devices. Consequently, a basic course in electromagnetics and applications has been inc1uded in most first-degree courses in electrical and electronic engineering since about 1950. The many earlier excellent texts available were unsuitable for engineering courses in electromagnetics for two reasons. First, they had been written from the point of view of the physicist, being more concerned with basic principles than with applications. Second, the introduction of SI (rationalised MKS) units meant that these earlier texts needed to be revised. Consequently the new texts in this subject have been in the main written by and for electrical engineers: as examples see the books by Skilling, Cullwick, Carter, Hayt, and Lorrain and Corson. These excellent texts have been found too advanced and too lengthy for the short time allocated to electromagnetism at Nottingham, that is about fifteen lecture hours in the first year and about twenty in the second year.

1 Vector Analysis.- 1.1 Vector addition and subtraction.- 1.2 Multiplication with vectors.- 1.3 Vector differentiation.- 1.4 Fields.- 1.5 Gradient, divergence and curl.- 1.6 Double operations with del.- 1.7 Vector field classification.- 1.8 Coordinate systems.- 1.9 Data sheet.- Problems.- 2 The Electric Field.- 2.1 Coulomb’s law.- 2.2 Electric field strength E.- 2.3 Electric flux ? and electric flux density D.- 2.4 Gauss’s theorem.- 2.5 Maxwell’s first equation.- 2.6 Energy and potential.- 2.7 Conservative field.- 2.8 Potential gradient.- 2.9 The potential energy of a system of point charges.- 2.10 Energy density in an electric field.- Problems.- 3 The Electric Field and Materials.- 3.1 Current.- 3.2 The continuity equation.- 3.3 Metallic conductors.- 3.4 Boundary conditions in ideal conductors.- 3.5 Dielectrics.- 3.6 Capacitors and capacitance.- Problems.- 4 The Magnetic Field.- 4.1 Laws of magnetic force.- 4.2 Maxwell’s third equation: curl H.- 4.3 Maxwell’s curl equations.- 4.4 Stokes’ theorem.- 4.5 Maxwell’s fourth equation: div B.- 4.6 Maxwell’s equations for steady (d.c.) fields.- 4.7 Magnetic potential.- 4.8 Vector magnetic potential A.- 4.9 Inductance in terms of magnetic potential.- Problems.- 5 Magnetic Forces and Magnetic Media.- 5.1 Forces due to magnetic fields.- 5.2 Forces in circuits due to own fields.- 5.3 Magnetic media.- 5.4 Boundary conditions for magnetic media.- 5.5 Energy storage in the magnetic field.- 5.6 Mechanical force on magnetic material.- 5.7 Magnetic circuit.- Problems.- 6 Fields Varying in Time.- 6.1 Faraday’s law.- 6.2 Displacement current; Maxwell’s hypothesis.- 6.3 Maxwell’s equations, final forms.- 6.4 Boundary conditions.- 6.5 Field functions.- Problems.- 7 Electromagnetic Waves.- 7.1 Wave motion.- 7.2Free-space wave equations.- 7.3 Plane waves in homogeneous loss-free media.- 7.4 Poynting’s vector 𝓟.- 7.5 Plane waves in a medium having loss.- 7.6 Radiation pressure.- Problems.- 8 Field Problems-Non-exact Solutions.- 8.1 Two-dimensional fields: basic principles.- 8.2 Current flow in a thin conducting-sheet.- 8.3 Free-hand mapping.- 8.4 Field correlation with analogues.- 8.5 Numerical methods.- Problems.- 9 Field Problems-Analytical Solutions.- 9.1 Kelvin’s method of images.- 9.2 Conformal transformation.- 9.3 Separation of variables.- Problems.- 10 Some Low-frequency Applications.- 10.1 General observations about Maxwell’s equations.- 10.2 Maxwell’s equations applied to a transformer.- 10.3 Diffusion equation.- 10.4 Field produced by an element of changing flux.- 10.5 The electromagnetic pump.- 10.6 Drift and diffusion in semiconductors.- 10.7 The abrupt p-n junction.- Problems.- 11 High-frequency Effects.- 11.1 Phase and group velocity.- 11.2 The refractive index.- 11.3 Transmission and reflection of waves.- 11.4 Fibre Optics.- 11.5 Electromagnetic waves on a transmission line.- 11.6 Transverse electric waves.- Problems.- Appendix 1: The Three Main Coordinate Systems.- A1.1 Component transform matrices.- A1.2 Variable transforms.- A1.2.1 Change components and datum vectors.- A 1.2.2 Change variables x, y, z to ?, ?, z.- Appendix 2: Useful Data.- A2.1 Fundamental physical constants.- A2.2 Vector identities.- A2.3 Vector operations.- A2.3.1 Divergence.- A2.3.2 Gradient.- A2.3.3 Curl.- A2.3.4 Laplacian.- Appendix 3: Solid Angle.- A3.1 Examples of solid angles.- Appendix 4: Gaussian Elimination Program.- Solutions to Selected Problems.- References.

Zusatzinfo XVI, 288 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Optik
ISBN-10 1-4684-0620-5 / 1468406205
ISBN-13 978-1-4684-0620-7 / 9781468406207
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

Buch | Softcover (2022)
Wiley-VCH (Verlag)
54,90
Berechnung der elektromagnetischen Kopplung, Prüf- und Messtechnik, …

von Frank Gustrau; Holger Kellerbauer

Buch | Hardcover (2022)
Hanser (Verlag)
39,99