Time-dependent and Vibration Problems -

Time-dependent and Vibration Problems

Carlos A. Brebbia (Herausgeber)

Buch | Softcover
XIV, 262 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1985
Springer Berlin (Verlag)
978-3-642-82400-5 (ISBN)
106,99 inkl. MwSt
This series has been developed in response to the interest shown in boundary ele ments by scientists and engineers. Whilst Volume 1 was dedicated to basic principles and applications, this book is concerned with the state of the art in the solution of time-dependent problems. Since papers have recently been published on this im portant topic it is time to produce a work of a more permanent nature. The volume begins with a chapter on the Fundamentals of Boundary Integral Equation Methods in Elastodynamics. After reviewing the basic equations of elasto dynamics, the wave equation and dynamic reciprocal theorems are stated and the direct and indirect boundary element formulations are presented. Eigenvalue problems are discussed together with the case of the Fourier transformations. Several applications illustrate the effectiveness of the technique for engineering. Chapter 2 examines some of the various boundary integral equation formulations available for elastodynamic problems. In particular the displacement-traction for mulation is compared with the displacement-potential case. The special character istics of the elastodynamics fundamental solutions are discussed in detail and a criti cal comparison with the elastostatics case is presented. While the chapter is not meant to be a complete review of the work in the field, the original presentation of the problem and the suggestions for further work make an important contribu tion to the development of the method.

1 Fundamentals of Boundary Integral Equation Methods in Elastodynamics.- 1.1 Introduction.- 1.2 Elastodynamic Problems.- 1.3 BIE Formulations in Time-Space Domain.- 1.4 BIE Formulations in the Transformed Domain of Integral Transforms.- 1.5 Integral Equation Formulations for Inhomogeneous Domain.- 1.6 Eigenfrequency Problems.- 1.7 Some Remarks on Inherent Problems of BIEM in Elastodynamics.- 1.8 Application Examples.- 1.9 Concluding Remarks.- References.- 2 Elastic Potentials in BIE Formulations.- 2.1 Introduction.- 2.2 Elastodynamic Formulations.- 2.3 Elastostatic Formulations.- 2.4 Solution Methods.- 2.5 Comments and Suggestions.- References.- 3 Time Dependent Non-Linear Potential Problems.- 3.1 Introduction.- 3.2 Governing Equations.- 3.3 Homogeneous Parabolic Equation.- 3.4 Constant and Linear Time Interpolation.- 3.5 Non-Linear Boundary Conditions for the Case of Constant Conductivity.- 3.6 Non-Linear Boundary Conditions for the Case of Temperature Dependent Conductivity.- 3.7 Applications.- 3.8 Conclusions.- References.- 4 Further Developments on the Solution of the Transient Scalar Wave Equation.- 4.1 Introduction.- 4.2 The Boundary Initial Value Problem.- 4.3 Dirac Delta and Heaviside Functions.- 4.4 Fundamental Solution in Three Dimensions.- 4.5 Kirchhoff Integral Representation.- 4.6 Two-Dimensional Boundary Integral Equation.- 4.7 Additional Transformations to Volterra's Integral Representation.- 4.8 Numerical Implementation.- 4.9 Examples.- References.- 5 Transient Elastodynamics.- 5.1 Introduction.- 5.2 Basic Theory.- 5.3 The Initial Value Problem of Elastodynamics.- 5.4 One-Dimensional Motions.- 5.5 Plane Motions.- 5.6 Fundamental Solutions for Transient Elastodynamics.- 5.7 Time Domain Elastodynamic Boundary Integral Representation.- 5.8 AdditionalTransformations to the Two-Dimensional Boundary Integral Equation of Elastodynamics.- 5.9 Numerical Implementation for Two Dimensions.- 5.10 Examples-Two-Dimensional Elastodynamics.- 5.11 Conclusions.- References.- 6 Propagation of Surface Waves.- 6.1 Introduction.- 6.2 Three-Dimensional Formulation.- 6.3 Floating Bodies.- 6.4 Vertical Axisymmetric Bodies.- 6.5 Vertical Cylinders of Arbitrary Section.- 6.6 Horizontal Cyclinders of Arbitrary Section.- 6.7 Transient Problems.- 6.8 Nonlinear Problems.- References.- 7 Boundary Integral Formulation of Mass Matrices for Dynamic Analysis.- 7.1 Introduction.- 7.2 Formulation of the Dynamical Problem.- 7.3 Various Boundary Integral Formulations.- 7.4 Boundary Integral Formulation Using the Statical Fundamental Solution.- 7.5 The Numerical Solution Procedure.- 7.6 Derivation of Different Types of Dynamical Problems.- 7.7 Two-Dimensional Formulation.- 7.8 Computer Implementation.- 7.9 Applications.- Conclusions.- References.- 8 Boundary Element Method for Laminar Viscous Flow and Convective Diffusion Problems.- 8.1 Introduction.- 8.2 Governing Equations.- 8.3 Boundary Integral Equations.- 8.4 Boundary Element Approximation.- 8.5 Computational Scheme.- 8.6 Numerical Examples.- 8.7 Conclusion.- References.- 9 Asymptotic Accuracy and Convergence for Point Collocation Methods.- 9.1 Introduction.- 9.2 Examples of Boundary Integral Equations.- 9.3 Standard Collocation for Two-Dimensional Problems.- 9.4 Standard Collocation for Three-Dimensional Problems with Fredholm Boundary Integral Equations of the Second Kind.- References.

Erscheint lt. Verlag 8.12.2011
Reihe/Serie Topics in Boundary Element Research
Zusatzinfo XIV, 262 p.
Verlagsort Berlin
Sprache englisch
Maße 156 x 244 mm
Gewicht 447 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Mechanik
Technik
Schlagworte Calculus • Dynamics • Elastostatics • Fourier transform • integral equation • Oscillation • Schwingung • statics • Time • Transformation • Vibration • wave equation
ISBN-10 3-642-82400-5 / 3642824005
ISBN-13 978-3-642-82400-5 / 9783642824005
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95