Dynamics Reported

Dynamics Reported

Expositions in Dynamical Systems
Buch | Softcover
IX, 289 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1996
Springer Berlin (Verlag)
978-3-642-79933-4 (ISBN)
117,69 inkl. MwSt
DYNAMICS REPORTED reports on recent developments in dynamical systems. Dynamical systems of course originated from ordinary differential equations. Today, dynamical systems cover a much larger area, including dynamical processes described by functional and integral equations, by partial and stochastic differential equations, etc. Dynamical systems have involved remarkably in recent years. A wealth of new phenomena, new ideas and new techniques are proving to be of considerable interest to scientists in rather different fields. It is not surprising that thousands of publications on the theory itself and on its various applications are appearing DYNAMICS REPORTED presents carefully written articles on major subjects in dynam ical systems and their applications, addressed not only to specialists but also to a broader range of readers including graduate students. Topics are advanced, while detailed expo sition of ideas, restriction to typical results - rather than the most general ones - and, last but not least, lucid proofs help to gain the utmost degree of clarity. It is hoped, that DYNAMICS REPORTED will be useful for those entering the field and will stimulate an exchange of ideas among those working in dynamical systems Summer 1991 Christopher K. R. T Jones Drs Kirchgraber Hans-Otto Walther Managing Editors Table of Contents Hyperbolicity and Exponential Dichotomy for Dynamical Systems Neil Fenichel 1. Introduction . . . . . . . . . . . . . . . . . . I 2. The Main Lemma . . . . . . . . . . . . . . . . 2 3. The Linearization Theorem of Hartman and Grobman 5 4. Hyperbolic Invariant Sets: EUR-orbits and Stable Manifolds 6 5.

Hyperbolicity and Exponential Dichotomy for Dynamical Systems.- 1. Introduction.- 2. The Main Lemma.- 3. The Linearization Theorem of Hartman and Grobman.- 4. Hyperbolic Invariant Sets: e-orbits and Stable Manifolds.- 5. Structural Stability of Anosov Diffeomorphisms.- 6. Periodic Points of Anosov Diffeomorphisms.- 7. Axiom A Diffeomorphisms: Spectral Decomposition.- 8. The In-Phase Theorem.- 9. Flows.- 10. Proof of Lemma 1.- References.- Feedback Stabilizability of Time-Periodic ParabolicEquations.- 0. Introduction.- I. Linear Periodic Evolution Equations.- II. Controllability, Observability and Feedback Stabilizability.- III. Applications to Second Order Time-Periodic Parabolic Initial-Boundary Value Problems.- References.- Homoclinic Bifurcations with Weakly Expanding Center.- 1. Introduction.- 2. Hypotheses, a Reduction Principle and Basic Existence Theorems.- 3. Preliminaries.- 4. Proof of the Main Results in 2.- 5. Simple Periodic Solutions.- 6. Bifurcations of Homoclinic Solutions with One-Dimensional Local Center Manifolds.- 7. Estimates Related to a Nondegenerate Hopf Bifurcation.- 8. Interaction of Homoclinic Bifurcation and Hopf Bifurcation.- 9. The Disappearance of Periodic and Aperiodic Solutions when ?2 Passes Through Turning Points.- References.- Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perturbation Study.- 1. Introduction.- 2. Geometric Structure and Dynamics of the Unperturbed System.- 3. Geometric Structure and Dynamics of the Perturbed System.- 4. Fiber Representations of Stable and Unstable Manifolds.- 5. Orbits Homoclinic to qEUR.- 6. Numerical Study of Orbits Homoclinic to qEUR.- 7. The Dynamical Consequences of Orbits Homoclinic to qEUR: The Existence and Nature of Chaos.- 8. Conclusion.-References.

Erscheint lt. Verlag 14.12.2011
Reihe/Serie Dynamics Reported. New Series
Co-Autor N. Fenichel, P. Koch Medina, D.W. McLaughlin, X. Lin, E.A.II Overman, S. Wiggins, C. Xiong
Zusatzinfo IX, 287 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 463 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte Analysis • Bifurcation • Bifurcations • Bifurkation • Boundary value problem • Chaos • diffeomorphism • Dynamical system • Dynamical Systems • eigenvalue • hyperbolic system • Hyperbolic systems • hyperbolische Systeme • Interpolation • Invariant • manifold • Operator • perturbation theory • Solution • Spectral Theorem • Stabilität • stability • Störungsrechnung
ISBN-10 3-642-79933-7 / 3642799337
ISBN-13 978-3-642-79933-4 / 9783642799334
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich