Forest Analytics with R (eBook)
354 Seiten
Springer New York (Verlag)
978-1-4419-7762-5 (ISBN)
authors adopt a problem-driven approach, in which statistical and mathematical tools are introduced in the context of the forestry problem that they can help to resolve. All the tools are introduced in the context of real forestry datasets, which provide compelling examples of practical applications.
The modeling challenges covered within the book include imputation and interpolation for spatial data, fitting probability density functions to tree measurement data using maximum likelihood, fitting allometric functions using both linear and non-linear least-squares regression, and fitting growth models using both linear and non-linear mixed-effects modeling. The coverage also includes deploying and
using forest growth models written in compiled languages, analysis of natural resources and forestry inventory data, and forest estate planning and optimization using linear programming.
The book would be ideal for a one-semester class in forest biometrics or applied statistics for natural resources management. The text assumes no programming background, some introductory statistics,
and very basic applied mathematics.
Andrew Robinson has been associate professor of forest mensuration and forest biometrics at the University of Idaho, and is currently senior lecturer in applied statistics at the University of Melbourne. He received his PhD in forestry from the University of Minnesota. Robinson is author of the popular and freely-available "icebreakeR" document.
Jeff Hamann has been a software developer, forester, and financial analyst. He is currently a consultant specializing in forestry, operations research, and geographic information sciences. He received his PhD in forestry from Oregon State University.
Both authors have presented numerous R workshops to forestry professionals and scientists, and others.
Forest Analytics with R combines practical, down-to-earth forestry data analysis and solutions to real forest management challenges with state-of-the-art statistical and data-handling functionality. Theauthors adopt a problem-driven approach, in which statistical and mathematical tools are introduced in the context of the forestry problem that they can help to resolve. All the tools are introduced in the context of real forestry datasets, which provide compelling examples of practical applications. The modeling challenges covered within the book include imputation and interpolation for spatial data, fitting probability density functions to tree measurement data using maximum likelihood, fitting allometric functions using both linear and non-linear least-squares regression, and fitting growth models using both linear and non-linear mixed-effects modeling. The coverage also includes deploying andusing forest growth models written in compiled languages, analysis of natural resources and forestry inventory data, and forest estate planning and optimization using linear programming. The book would be ideal for a one-semester class in forest biometrics or applied statistics for natural resources management. The text assumes no programming background, some introductory statistics,and very basic applied mathematics.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Natur / Technik ► Natur / Ökologie |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Studium ► Querschnittsbereiche ► Epidemiologie / Med. Biometrie | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Technik ► Umwelttechnik / Biotechnologie | |
Weitere Fachgebiete ► Land- / Forstwirtschaft / Fischerei | |
ISBN-10 | 1-4419-7762-7 / 1441977627 |
ISBN-13 | 978-1-4419-7762-5 / 9781441977625 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich