Plant Electrophysiology (eBook)

Signaling and Responses

Alexander Volkov (Herausgeber)

eBook Download: PDF
2012 | 1. Auflage
XIV, 378 Seiten
Springer-Verlag
978-3-642-29110-4 (ISBN)

Lese- und Medienproben

Plant Electrophysiology -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book, written by the leading experts in the field of plant electrophysiology, provides a comprehensive and up-to-date overview of the current state of knowledge on electrical signaling and responses in plant physiology. It covers a significant interdisciplinary area for a broad range of researchers, emphasizing the physical, chemical, biological, and technological aspects of plant electrophysiology, while also demonstrating the role of electrochemical processes and ion channels in plant life cycles. Separate chapters describe the electrophysiology of the Venus flytrap, the Telegraph plant, Mimosa pudica, and other interesting plant species. Subsequent sections focus on mechanisms of plant movement, the role of ion channels, morphing structures, and the effects of electrical signal transduction on photosynthesis and respiration. Further topics include the electrophysiology of plant-insect interactions, how plants sense different environmental stresses and stimuli, and how phytoactuators respond to them. All chapters analyze the generation and transmission of electrical signals in plants.

Preface 4
References 6
Contents 7
Contributors 9
1 Morphing Structures in the Venus Flytrap 12
Abstract 12
1.1…Introduction 12
1.2…Anatomy and Mechanics of the Trap 15
1.3…The Hydroelastic Curvature Model of Venus Flytrap 16
1.4…Comparison with Experiment 21
1.5…Interrogating Consecutive Stages of Trap Closing 23
1.6…Electrical Memory in Venus Flytrap 28
1.7…Complete Hunting Cycle of the Venus Flytrap 34
Acknowledgment 40
References 40
2 The Effect of Electrical Signals on Photosynthesis and Respiration 43
Abstract 43
2.1…Introduction 44
2.2…Methodology and Experimental Setup 45
2.2.1 Gas Exchange Measurements 45
2.2.2 Chlorophyll Fluorescence Measurements 47
2.2.3 Polarographic O2 Measurements 51
2.3…Effect of APs on Photosynthesis 51
2.3.1 Chara cells 51
2.3.2 Carnivorous Plant Venus Flytrap (D. muscipula) 53
2.3.3 Mimosa Pudica 56
2.3.4 Other Plant Species 57
2.4…Effect of VPs on Photosynthesis 59
2.4.1 Mimosa Pudica 60
2.4.2 Other Plant Species 61
2.5…Possible Mechanism Underlying Photosynthetic Limitation upon Impact of Electrical Signals 63
2.6…Effect of Electrical Signalling on Respiration 65
2.7…Conclusions 66
Acknowledgments 67
References 67
3 Mathematical Modeling, Dynamics Analysis and Control of Carnivorous Plants 73
Abstract 73
3.1…Introduction 74
3.2…Mathematical Modeling 78
3.2.1 Double-Trigger Process 79
3.2.2 Water Kinetics 80
3.2.2.1 Capture Process: (From the Open to the Semi-Closed State) 83
3.2.2.2 Release Process: (From the Semi-Closed to the Open State) 84
3.2.2.3 Sealing Process: (From the Semi-Closed to the Closed State) 86
3.2.2.4 Reopening Process: (From the Fully Closed to the Open State) 86
3.2.3 Summary of Model 87
3.3…Flytrap Robot 88
3.4…Conclusions 92
References 92
4 The Telegraph Plant: Codariocalyx motorius (Formerly Also Desmodium gyrans) 94
Abstract 94
4.1…Introduction 95
4.2…Anatomy and Physiology of the Codariocalyx Pulvinus 97
4.2.1 Pulvinus Shape and Bending 98
4.2.2 Pulvinus Curvature and Water Transport 100
4.2.3 Pulvinus Water Transport 100
4.3…Codariocalyx: Experiments on Leaflet Movements 102
4.3.1 Background: J.C. Bose 103
4.3.2 Leaflet Movements and Temperature 104
4.3.3 Leaflet Movements and Mechanical Load 104
4.3.4 Leaf Movements and Light 105
4.4…Codariocalyx Experiments: Contributions from Electro-Physiology and Biochemistry 107
4.4.1 Microelectrode Electrophysiology 107
4.4.2 Ca2+ Regulation in Plant Cells 108
4.4.3 Ca2+ and the Phosphatidyl Inositol Signalling Chain 109
4.5…Codariocalyx Experiments: Contributions from Electromagnetic Perturbations of Rhythmic Leaflet Movements 111
4.5.1 Interlude: Oscillations and Singularities 111
4.5.2 Applications of Electric Currents to Pulvinus 113
4.5.3 Static Magnetic Fields 115
4.6…The ‘‘Heart of the Matter’’: Modelling the Pulvinus Tissue 116
4.6.1 Diffusion Coupling 117
4.6.2 Modelling Ca2+ Oscillations Applied to Leaflet Oscillations 118
4.6.3 From Concentration Variations to Movements 119
4.7…Discussion 119
4.7.1 Experimental Observations and Physiology
4.7.2 Experimental: Electrophysiology 123
4.7.3 Systems Approach and Modelling 124
References 126
5 Regulatory Mechanism of Plant Nyctinastic Movement: An Ion Channel-Related Plant Behavior 133
Abstract 133
5.1…Ion Channel-Related Regulatory Mechanism on Plant Nyctinastic Movement 133
5.2…Chemical Studies on Nyctinastic Leaf Movement 137
Leaf Opening and Closing Substances in Nyctinastic Plants 139
Bioorganic Studies of Nyctinasty Using Functionalized Leaf Movement Factors as Molecular Probes: Fluorescence Studies on Nyctinasty 139
Cell-Shrinking in the Protoplast of Motor Cell in S. saman 143
Potassium Fluxes in Motor Cell Protoplast in S. saman 144
Differences Between Jasmonic Acid Glycocide and Jasmonic Acid Signaling 145
References 146
6 Signal Transduction in Plant--Insect Interactions: From Membrane Potential Variations to Metabolomics 151
Abstract 151
6.1…Introduction 152
6.2…Characteristics of Electric Signals During Insect Herbivory 152
6.2.1 Action Potentials 152
6.2.2 Variation Potentials 153
6.3…VPs are a Common Events in Plant--Biotroph Interactions 154
6.4…Herbivory-Induced VPs are Triggered by Calcium Ions 155
6.4.1 Herbivory Versus Mechanical Wounding 156
6.5…Role of Herbivore’s OS and Their Elicitors on Early Electric Signaling 157
6.5.1 Herbivore-Associated Elicitors 158
6.5.2 Alamethicin, HAE, and OS Exhibit Ion Channel Forming Activities 159
6.6…Electric Signals Trigger Cascade of Events Leading to Gene Expression 160
6.7…Proteomic Responses to Herbivory 167
6.8…Electrical Signal Ultimate Target: The Induction of Metabolic Responses 170
6.9…Concluding Remarks 174
References 174
7 Phytosensors and Phytoactuators 181
Abstract 181
7.1…Introduction 181
7.2…Host Tropism: Insect-Induced Electrochemical Signals in Plants 185
7.3…Phototropism and Heliotropism: Molecular Recognition of the Direction of Light by Plants 185
7.4…Thigmotropism: Mechanosensation in Plants 189
7.4.1 Mechanics of Petiole Movement 196
7.5…Photoperiodism and Time Sensing: Biological Clock 198
7.5.1 Circadian Rhythms in Electrical Circuits of Clivia miniata 198
7.5.2 Circadian Rhythms in Electrical Circuits of Aloe vera and Mimosa pudica 203
7.6…Plants as Phytosensors for Monitoring Atmospheric Electrochemistry: Acid Rain 204
7.7…Chemiotropism: Electrical Signals Induced by Pesticides and Uncouplers 205
7.8…Gravitropism in Plants 207
7.9…Conclusion 208
Acknowledgement 209
References 209
8 Generation, Transmission, and Physiological Effects of Electrical Signals in Plants 215
Abstract 215
8.1…Introduction 215
8.2…Generation of Electrical Signals 217
8.3…Transmission of Electrical Messages 217
8.3.1 Types of Signals 218
8.3.2 Means of Signal Transmission 219
8.3.3 The Aphid Technique as a Tool for Measuring Electrical Signals in the Phloem 220
8.3.4 Electrical Properties of the Phloem 222
8.4…Physiological Effects of Electrical Signals 224
8.4.1 Regulation of Rapid Leaf Movements 224
8.4.2 Electrical Signaling and its Impact on Phloem Transport 224
8.4.3 The Role of Electrical Signals in Root-to-Shoot Communication of Water-Stressed Plants 226
8.4.4 The Role of Electrical Signalling During Fertilization 227
8.4.5 The Role of Electrical Signalling in the Regulation of Photosynthesis 228
8.4.6 Effects of Electrical Signals on Gene Expression 231
8.5…Long-Distance Electrical Signaling in Woody Plants 231
8.5.1 Membrane Potential, Electrical Signals and Growth of Willow Roots 232
8.5.2 Electrical Properties of Wood-Producing Cells 232
8.6…Conclusion 234
References 235
9 The Role of PlasmodesmataPlasmodesmata in the Electrotonic Transmission of Action PotentialAction Potentialelectrotonic transmissions 241
Abstract 241
9.1…Introduction 241
9.2…The Structure of Plasmodesmata 242
9.3…The Symplasmsymplasm as a Transport Pathway 242
9.3.1 Evidence for Intercellular Transportintercellular transport: Tracers and Fluorescent Dyes 243
9.3.2 Evidence for Intercellular Transport: Electrophysiology 243
9.3.3 Plasmodesmata as a Route for Intercellular Conduction of Electric Current 244
9.4…The Transmission of Action Potentials in Plants 247
9.4.1 Can Transmission of the Action Potential Occur via Excitation of the Plasmodesmal Plasma Membrane? 247
9.4.2 Can the Local External Current Generated by an Action Potential in One Cell Produce a Depolarization in the Neighboring Cell Sufficient to Trigger a Separate Action Potential? 248
9.4.3 Are Chemicals Involved in Intercellular Transmission of Action Potentials? 249
9.4.4 Is Propagation from Cell-to-Cell Electrotonic due to Flow of Current Between Cells via Plasmodesmata in the Absence of Excitation of the Plasma Membrane Within the Plasmodesmal Pore? 250
9.5…Conclusions 251
References 252
10 Moon and Cosmos: Plant Growth and Plant Bioelectricity 256
Abstract 256
10.1…Introduction 257
10.2…The Early Work of Harold Saxton Burr 259
10.3…Methodology 261
10.4…Bioelectricity in the Context of Lunar Parameters 263
10.4.1 Daily Oscillations of EPD 263
10.4.2 Monthly Oscillations of EPD 269
10.4.3 Annual Oscillations of EPD 272
10.5…Relationship of Bioelectric Potential and Solute Flow 273
10.5.1 Solute Flow in Secondary Xylem 273
10.5.2 Solute Flow in Phloem 276
10.6…A Moon-Generated Rhythm that May Initiate Bioelectric Impulses 276
10.7…Other Possible Regulators of Bioelectrical Patterns 278
10.8…Discussion 281
Acknowledgments 283
References 283
11 Biosystems Analysis of Plant Development Concerning Photoperiodic Flower Induction by Hydro-Electrochemicalelectrochemical Signal Transduction 288
Abstract 288
11.1…Introduction: Photoperiodic Flower Induction 289
11.2…A Systems Biological Analysis of Development in (the) Higher Plants C. rubrum and C. murale 290
11.3…The Model System Chenopodium: Induction of Flowering from Physiology to Molecular Biology 292
11.4…Electrophysiology and Plant Behaviour 293
11.5…Circadian Rhythms as Metabolic Bases for Hydro-Electrochemicalelectrochemical Signal Transduction 294
11.6…Hydraulic-Electrochemicalelectrochemical Oscillations as Integrators of Cellular and Organismic Activity 297
11.7…Local Hydraulic Signalling: The Shoot Apex in Transition 299
11.8…Summary and Perspectives: Electrophysiology and Primary Meristems 303
References 304
12 Actin, Myosin VIII and ABP1 as Central Organizers of Auxin-Secreting Synapses 309
Abstract 309
12.1…Secretion of Auxin at Plant Synapses in Cells of Transition Zone 309
12.2…Secretion of Auxin is Linked to Polar Transport of Calcium 310
Box 1: Features of the PAT Implicating its Synaptic Secretory ModeBox 1: Features of the PAT Implicating its Synaptic Secretory Mode 311
12.3…Plant Synapses are Organized by F-actin, Endocytosis, and Endocytic Vesicular Recycling 312
12.4…Myosin VIII as Endocytic Plant Myosin 313
12.5…PIN Polarity is Dependent on Plasma Membrane: Cell Wall and Cell-to-Cell Adhesions 313
12.6…Plasmodesmata as Electrical Synapses 314
12.7…ABP1 as Auxin Receptor for Electrical Responses 314
12.8…ABP1 as Auxin Receptor for Endocytosis Feeding into Synaptic Organelle TGN/EE 315
12.9…Evolution of Plant Synapses: From ABP1 to Synaptic Endocytosis and Vesicle Recycling 315
12.10…Evolution of Plant Synapses: Expansion of Synaptic PINs During Plant Evolution 316
12.11…Are Fungal Infections Related to the Opposite (Shootward) Polarity of PIN2? 317
12.12…Did ABP1 Activity Result in Formation of the Transition Zone? 317
12.13…Plant Synaptic Activity Emerge as Elusive Flux Sensor for the Polar Transport of Auxin 318
12.14…Importance of Active Plant Synapses in the Transition Zone for Tropisms and Organogenesis: From Ionic and Electric Oscillations Towards Gene Expression Oscillations 319
12.15…Conclusion 320
References 321
13 Ion Currents Associated with Membrane Receptors 328
Abstract 328
13.1…Introduction 328
13.2…Role of Electrical Signals in Plant Development 330
13.3…Ligand-Binding Receptors 330
13.3.1 Types of Membrane Bound Receptors 330
13.4…Small Signaling Peptides 331
13.4.1 Legume-Rhizobium Symbiosis 332
13.4.2 Pollen Tube Growth and Guidance 333
13.4.3 Natriuretic Peptide and Salt Stress 334
13.4.4 Pathogen and Herbivory Recognition 335
13.4.5 Specific Signaling Molecule Perception: Two Case Studies, Systemin and Flagellin 336
13.5…Conclusion 338
References 339
14 Characterisation of Root Plasma Membrane Ca2+-Permeable Cation Channels: Techniques and Basic Concepts 343
Abstract 343
14.1…Introduction 343
14.2…Cation Channels in Plants 344
14.3…What You Have to Know Before Starting Measurement 347
14.3.1 Cation Channels Catalyse Ca2+ Influx (not Efflux) 347
14.3.2 Isolation of Ca2+ Conductance from the Total Plasma Membrane Conductance 348
14.3.3 Pharmacological Analysis of Ca2+-Permeable Channels 350
14.3.4 Different Types of Root Ca2+-Permeable Cation Channels and Their Current--Voltage Relationships 350
14.4…Electrophysiological Techniques for Studying Root Ca2+-Permeable Channels 355
14.4.1 Measurement of Field-Potentials 355
14.4.2 Extracellular Ion-Selective Microelectrodes 356
14.4.3 Intracellular Techniques: Measurements of Membrane Potential with Single Sharp Microelectrode 358
14.4.4 Intracellular Techniques: Two- and One-Microelectrode Voltage-Clamp 359
14.4.5 Intracellular Techniques: Patch Clamp 360
14.4.5.1 Protoplasts 360
14.4.5.2 Patch-Clamp Pipettes 362
14.4.5.3 Patch-Clamp Set-Up and Configurations 364
14.4.5.4 Patch Clamp and Root Ca2+-Permeable Cation Channels 366
14.4.5.5 Disadvantage of Patch-Clamp Technique 366
14.4.6 Ca2+ Imaging and Aequorin Luminometry 367
14.5…Conclusions and Perspectives 369
References 369
Subject Index 374

Erscheint lt. Verlag 3.5.2012
Zusatzinfo XIV, 378 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie
Technik
Schlagworte Bioelectrochemistry • ion channels • MEMBRANE TRANSPORT • Plant Biophysics • Plant Electrophysiology • Venus Flytrap
ISBN-10 3-642-29110-4 / 3642291104
ISBN-13 978-3-642-29110-4 / 9783642291104
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich