Topology, Geometry and Gauge fields -  Gregory L. Naber

Topology, Geometry and Gauge fields (eBook)

Foundations
eBook Download: PDF
2010 | 2. Auflage
440 Seiten
Springer New York (Verlag)
978-1-4419-7254-5 (ISBN)
Systemvoraussetzungen
63,06 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.

Gregory Naber is a Professor at Drexel University in the Department of Mathematics
This is a book on topology and geometry and, like any books on subjects as vast as these, it has a point-of-view that guided the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. We ask the reader to come to us with some vague notion of what an electromagnetic field might be, a willingness to accept a few of the more elementary pronouncements of quantum mechanics, a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. To such a reader we offer an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1. Iwould go over both volumes thoroughly and make some minor changes in terminology and notation and correct any errors I find. In this new edition, a chapter on Singular Homology will be added as well as minor changes in notation and terminology throughout and some sections have been rewritten or omitted. Reviews of First Edition: It is unusual to find a book so carefully tailored to the needs of this interdisciplinary area of mathematical physics...Naber combines a knowledge of his subject with an excellent informal writing style."e;(NZMS Newletter)"e;...this book should be very interesting for mathematicians and physicists (as well as other scientists) who are concerned with gauge theories."e;(Zentralblatt Fuer Mathematik)
PDFPDF (Wasserzeichen)
Größe: 5,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich