Springer Handbook of Metrology and Testing (eBook)

eBook Download: PDF
2011 | 2nd ed. 2011
MCCXXXII, 32 Seiten
Springer Berlin (Verlag)
978-3-642-16641-9 (ISBN)

Lese- und Medienproben

Springer Handbook of Metrology and Testing -
Systemvoraussetzungen
341,33 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This Springer Handbook of Metrology and Testing presents the principles of Metrology - the science of measurement - and the methods and techniques of Testing - determining the characteristics of a given product - as they apply to chemical and microstructural analysis, and to the measurement and testing of materials properties and performance, including modelling and simulation.

The principal motivation for this Handbook stems from the increasing demands of technology for measurement results that can be used globally. Measurements within a local laboratory or manufacturing facility must be able to be reproduced accurately anywhere in the world.

The book integrates knowledge from basic sciences and engineering disciplines, compiled by experts from internationally known metrology and testing institutions, and academe, as well as from industry, and conformity-assessment and accreditation bodies.

The Commission of the European Union has expressed this as there is no science without measurements, no quality without testing, and no global markets without standards.



Dr. Horst Czichos has been President of BAM, the German Federal Institute for Materials Research and Testing (1992-2002) and President of EUROLAB, the European Federation of National Associations of Measurement, Testing and Analytical Laboratories (1999-2003). He holds degrees in precision engineering, physics and materials science from the Free University and the Technical University of Berlin, and obtained a Dr. h.c. from KU Leuven University for his research work in tribology. He is currently Professor of Mechatronics at the University of Applied Sciences, BHT Berlin, and received 2007 the Beuth Award for achievement in engineering education.

Dr. Saito is currently Senior Adviser Emeritus at the National Institute for Materials Science (NIMS) and has served as Chair of ISO/TC164 (Mechanical Testing of Metals) for nine years. He received his Dr.-Eng from the University of Tokyo in 1978 and since has held various positions at the National Research Institute for Metals, including Director of Materials Evaluation Division and Deputy Director-General of the Institute.

After retirement from his position as Director of the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology (NIST) Dr. Leslie Smith is a Research Associate at NIST. He received B.S. and Ph.D. degrees from Case Institute of Technology and the Catholic University of America in physical-organic chemistry and conducted research primarily on the adsorption of polymers and the degradation of polyesters.

Dr. Horst Czichos has been President of BAM, the German Federal Institute for Materials Research and Testing (1992-2002) and President of EUROLAB, the European Federation of National Associations of Measurement, Testing and Analytical Laboratories (1999-2003). He holds degrees in precision engineering, physics and materials science from the Free University and the Technical University of Berlin, and obtained a Dr. h.c. from KU Leuven University for his research work in tribology. He is currently Professor of Mechatronics at the University of Applied Sciences, BHT Berlin, and received 2007 the Beuth Award for achievement in engineering education. Dr. Saito is currently Senior Adviser Emeritus at the National Institute for Materials Science (NIMS) and has served as Chair of ISO/TC164 (Mechanical Testing of Metals) for nine years. He received his Dr.-Eng from the University of Tokyo in 1978 and since has held various positions at the National Research Institute for Metals, including Director of Materials Evaluation Division and Deputy Director-General of the Institute. After retirement from his position as Director of the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology (NIST) Dr. Leslie Smith is a Research Associate at NIST. He received B.S. and Ph.D. degrees from Case Institute of Technology and the Catholic University of America in physical-organic chemistry and conducted research primarily on the adsorption of polymers and the degradation of polyesters.

Title Pages 2
Preface 6
List of Authors 8
Contents 18
List of Abbreviations 24
A Fundamentals of Metrology and Testing 32
1 Introduction to Metrology and Testing 33
1.1 Methodologies of Measurement and Testing 33
1.1.1 Measurement 33
1.1.2 Testing 35
1.1.3 Conformity Assessment and Accreditation 37
1.2 Overview of Metrology 39
1.2.1 The Meter Convention 39
1.2.2 Categories of Metrology 39
1.2.3 Metrological Units 41
1.2.4 Measurement Standards 42
1.3 Fundamentals of Materials Characterization 43
1.3.1 Nature of Materials 43
1.3.2 Types of Materials 45
1.3.3 Scale of Materials 46
1.3.4 Properties of Materials 47
1.3.5 Performance of Materials 49
1.3.6 Metrology of Materials 50
References 52
2 Metrology Principles and Organization 53
2.1 The Roots and Evolution of Metrology 53
2.2 BIPM: The Birth of the Metre Convention 55
2.3 BIPM: The First 75 Years 56
2.4 Quantum Standards: A Metrological Revolution 58
2.5 Regional Metrology Organizations 59
2.6 Metrological Traceability 59
2.7 Mutual Recognition of NMI Standards: The CIPM MRA 60
2.7.1 The Essential Points of the MRA 60
2.7.2 The Key Comparison Database (KCDB) 61
2.7.3 Take Up of the CIPM MRA 61
2.8 Metrology in the 21st Century 62
2.8.1 Industrial Challenges 62
2.8.2 Chemistry, Pharmacy, and Medicine 63
2.8.3 Environment, Public Services, and Infrastructures 64
2.9 The SI System and New Science 64
References 67
3 Quality in Measurement and Testing 68
3.1 Sampling 69
3.1.1 Quality of Sampling 69
3.1.2 Judging Whether Strategies of Measurement and Sampling Are Appropriate 71
3.1.3 Options for the Design of Sampling 72
3.2 Traceability of Measurements 74
3.2.1 Introduction 74
3.2.2 Terminology 75
3.2.3 Traceability of Measurement Results to SI Units 75
3.2.4 Calibration of Measuring and Testing Devices 77
3.2.5 The Increasing Importance of Metrological Traceability 78
3.3 Statistical Evaluation of Results 79
3.3.1 Fundamental Concepts 79
3.3.2 Calculations and Software 82
3.3.3 Statistical Methods 83
3.3.4 Statistics for Quality Control 95
3.4 Uncertainty and Accuracy of Measurement and Testing 97
3.4.1 General Principles 97
3.4.2 Practical Example: Accuracy Classes of Measuring Instruments 98
3.4.3 Multiple Measurement Uncertainty Components 100
3.4.4 Typical Measurement Uncertainty Sources 101
3.4.5 Random and Systematic Effects 102
3.4.6 Parameters Relating to Measurement Uncertainty: Accuracy, Trueness, and Precision 102
3.4.7 Uncertainty Evaluation: Interlaboratory and Intralaboratory Approaches 104
3.5 Validation 107
3.5.1 Definition and Purpose of Validation 107
3.5.2 Validation, Uncertainty of Measurement, Traceability, and Comparability 108
3.5.3 Practice of Validation 110
3.6 Interlaboratory Comparisons and Proficiency Testing 116
3.6.1 The Benefit of Participation in PTs 117
3.6.2 Selection of Providers and Sources of Information 117
3.6.3 Evaluation of the Results 121
3.6.4 Influence of Test Methods Used 122
3.6.5 Setting Criteria 123
3.6.6 Trends 123
3.6.7 What Can Cause Unsatisfactory Performance in a PT or ILC? 124
3.6.8 Investigation of Unsatisfactory Performance 124
3.6.9 Corrective Actions 125
3.6.10 Conclusions 126
3.7 Reference Materials 126
3.7.1 Introduction and Definitions 126
3.7.2 Classification 127
3.7.3 Sources of Information 128
3.7.4 Production and Distribution 129
3.7.5 Selection and Use 130
3.7.6 Activities of International Organizations 133
3.7.7 The Development of RM Activities and Application Examples 134
3.7.8 Reference Materials for Mechanical Testing, General Aspects 136
3.7.9 Reference Materials for Hardness Testing 138
3.7.10 Reference Materials for Impact Testing 139
3.7.11 Reference Materials for Tensile Testing 143
3.8 Reference Procedures 145
3.8.1 Framework: Traceability and Reference Values 145
3.8.2 Terminology: Concepts and Definitions 147
3.8.3 Requirements: Measurement Uncertainty, Traceability, and Acceptance 148
3.8.4 Applications for Reference and Routine Laboratories 150
3.8.5 Presentation: Template for Reference Procedures 152
3.8.6 International Networks: CIPM and VAMAS 152
3.8.7 Related Terms and Definitions 155
3.9 Laboratory Accreditation and Peer Assessment 155
3.9.1 Accreditation of Conformity Assessment Bodies 155
3.9.2 Measurement Competence: Assessment and Confirmation 156
3.9.3 Peer Assessment Schemes 159
3.9.4 Certification or Registration of Laboratories 159
3.10 International Standards and Global Trade 159
3.10.1 International Standards and International Trade: The Example of Europe 160
3.10.2 Conformity Assessment 162
3.11 Human Aspects in a Laboratory 163
3.11.1 Processes to Enhance Competence - Understanding Processes 163
3.11.2 The Principle of Controlled Input and Output 164
3.11.3 The Five Major Elements for Consideration in a Laboratory 165
3.11.4 Internal Audits 165
3.11.5 Conflicts 166
3.11.6 Conclusions 166
3.12 Further Reading: Books and Guides 167
References 167
B Chemical and Microstructural Analysis 171
4 Analytical Chemistry 172
4.1 Bulk Chemical Characterization 172
4.1.1 Mass Spectrometry 172
4.1.2 Molecular Spectrometry 174
4.1.3 Atomic Spectrometry 183
4.1.4 Nuclear Analytical Methods 188
4.1.5 Chromatographic Methods 195
4.1.6 Classical Chemical Methods 200
4.2 Microanalytical Chemical Characterization 206
4.2.1 Analytical Electron Microscopy (AEM) 206
4.2.2 Electron Probe X-ray Microanalysis 207
4.2.3 Scanning Auger Electron Microscopy 210
4.2.4 Environmental Scanning Electron Microscope 212
4.2.5 Infrared and Raman Microanalysis 213
4.3 Inorganic Analytical Chemistry: Short Surveys of Analytical Bulk Methods 216
4.3.1 Inorganic Mass Spectrometry 217
4.3.2 Optical Atomic Spectrometry 219
4.3.3 X-ray Fluorescence Spectrometry (XRF) 219
4.3.4 Neutron Activation Analysis (NAA) and Photon Activation Analysis (PAA) 221
4.4 Compound and Molecular Specific Analysis: Short Surveys of Analytical Methods 222
4.5 National Primary Standards - An Example to Establish Metrological Traceability in Elemental Analysis 225
References 226
5 Nanoscopic Architecture and Microstructure 231
5.1 Fundamentals 237
5.1.1 Diffraction and Scattering Methods 237
5.1.2 {Microscopy and Topography} 241
5.1.3 Spectroscopy 252
5.2 Crystalline and Amorphous Structure Analysis 258
5.2.1 Long-Range Order Analysis 258
5.2.2 Medium-Range Order Analysis 261
5.2.3 Short-Range Order Analysis 263
5.3 Lattice Defects and Impurities Analysis 265
5.3.1 Point Defects and Impurities 266
5.3.2 Extended Defects 278
5.4 Molecular Architecture Analysis 284
5.4.1 Structural Determination by X-Ray Diffraction 284
5.4.2 Nuclear Magnetic Resonance (NMR) Analysis 285
5.4.3 Chemophysical Analysis 293
5.5 Texture, Phase Distributions, and Finite Structures Analysis 295
5.5.1 Texture Analysis 295
5.5.2 Microanalysis of Elements and Phases 297
5.5.3 Diffraction Analysis of Fine Structures 299
5.5.4 Quantitative Stereology 300
References 303
6 Surface and Interface Characterization 306
6.1 Surface Chemical Analysis 307
6.1.1 Auger Electron Spectroscopy (AES) 310
6.1.2 X-ray Photoelectron Spectroscopy (XPS) 319
6.1.3 Secondary Ion Mass Spectrometry (SIMS) 323
6.1.4 Conclusions 332
6.2 Surface Topography Analysis 333
6.2.1 Stylus Profilometry 337
6.2.2 Optical Techniques 341
6.2.3 Scanning Probe Microscopy 343
6.2.4 Scanning Electron Microscopy 345
6.2.5 Parametric Methods 346
6.2.6 Applications and Limitations of Surface Measurement 347
6.2.7 Traceability 347
6.2.8 Summary 350
References 351
C Materials Properties Measurement 361
7 Mechanical Properties 362
7.1 Elasticity 363
7.1.1 Development of Elasticity Theory 363
7.1.2 Definition of Stress and Strain, and Relationships Between Them 364
7.1.3 Measurement of Elastic Constants in Static Experiments 367
7.1.4 Dynamic Methods of Determining Elastic Constants 372
7.1.5 Instrumented Indentation as a Method of Determining Elastic Constants 375
7.2 Plasticity 378
7.2.1 Fundamentals of Plasticity 378
7.2.2 Mechanical Loading Modes Causing Plastic Deformation 380
7.2.3 Standard Methods of Measuring Plastic Properties 381
7.2.4 Novel Test Developments for Plasticity 388
7.3 Hardness 389
7.3.1 Conventional Hardness Test Methods (Brinell, Rockwell, Vickers and Knoop) 391
7.3.2 Selecting a Conventional Hardness Test Method and Hardness Scale 397
7.3.3 Measurement Uncertainty in Hardness Testing (HR, HBW, HV, HK) 399
7.3.4 Instrumented Indentation Test (IIT) 401
7.4 Strength 411
7.4.1 Quasistatic Loading 412
7.4.2 Dynamic Loading 421
7.4.3 Temperature and Strain-Rate Effects 424
7.4.4 Strengthening Mechanisms for Crystalline Materials 425
7.4.5 Environmental Effects 427
7.4.6 Interface Strength: Adhesion Measurement Methods 428
7.5 Fracture Mechanics 431
7.5.1 Fundamentals of Fracture Mechanics 431
7.5.2 Fracture Toughness 433
7.5.3 Fatigue Crack Propagation Rate 442
7.5.4 Fractography 447
7.6 Permeation and Diffusion 449
7.6.1 Gas Transport: Steady-State Permeation 450
7.6.2 Kinetic Measurement 452
7.6.3 Experimental Measurement of Permeability 454
7.6.4 Gas Flux Measurement 456
7.6.5 Experimental Measurement of Gas and Vapor Sorption 459
7.6.6 Method Evaluations 463
7.6.7 Future Projections 465
References 465
8 Thermal Properties 476
8.1 Thermal Conductivity and Specific Heat Capacity 477
8.1.1 Steady-State Methods 479
8.1.2 Transient Methods 481
8.1.3 Calorimetric Methods 484
8.2 Enthalpy of Phase Transition, Adsorption and Mixing 485
8.2.1 Adiabatic Calorimetry 487
8.2.2 Differential Scanning Calorimetry 488
8.2.3 Drop Calorimetry 489
8.2.4 Solution Calorimetry 490
8.2.5 Combustion Calorimetry 491
8.3 Thermal Expansion and Thermomechanical Analysis 492
8.3.1 Optical Methods 492
8.3.2 Push Rod Dilatometry 493
8.3.3 Thermomechanical Analysis 493
8.4 Thermogravimetry 494
8.5 Temperature Sensors 494
8.5.1 Temperature and Temperature Scale 494
8.5.2 Use of Thermometers 497
8.5.3 Resistance Thermometers 498
8.5.4 Liquid-in-Glass Thermometers 500
8.5.5 Thermocouples 501
8.5.6 Radiation Thermometers 502
8.5.7 Cryogenic Temperature Sensors 503
References 505
9 Electrical Properties 507
9.1 Electrical Materials 508
9.1.1 Conductivity and Resistivity of Metals 508
9.1.2 Superconductivity 509
9.1.3 Semiconductors 510
9.1.4 Conduction in Polymers 512
9.1.5 Ionic Conductors 512
9.1.6 Dielectricity 513
9.1.7 Ferroelectricity and Piezoelectricity 514
9.2 Electrical Conductivity of Metallic Materials 515
9.2.1 Scale of Electrical Conductivity Reference Materials
9.2.2 Principal Methods 516
9.2.3 DC Conductivity, Calibration of Reference Materials 518
9.2.4 AC Conductivity, Calibration of Reference Materials 518
9.2.5 Superconductivity 519
9.3 Electrolytic Conductivity 520
9.3.1 Scale of Conductivity 520
9.3.2 Basic Principles 521
9.3.3 The Measurement of the Electrolytic Conductivity 523
9.4 Semiconductors 529
9.4.1 Conductivity Measurements 529
9.4.2 Mobility Measurements 532
9.4.3 Dopant and Carrier Concentration Measurements 535
9.4.4 I-V Breakdown Mechanisms 540
9.4.5 Deep Level Characterization and Minority Carrier Lifetime 541
9.4.6 Contact Resistances of Metal-Semiconductor Contacts 545
9.5 Measurement of Dielectric Materials Properties 548
9.5.1 Dielectric Permittivity 549
9.5.2 Measurement of Permittivity 551
9.5.3 Measurement of Permittivity Using Microwave Network Analysis 554
9.5.4 Uncertainty Considerations 558
9.5.5 Conclusion 559
References 559
10 Magnetic Properties 563
10.1 Magnetic Materials 564
10.1.1 Diamagnetism, Paramagnetism, and Ferromagnetism 564
10.1.2 Antiferromagnetism, Ferrimagnetism and Noncollinear Magnetism 565
10.1.3 Intrinsic and Extrinsic Properties 566
10.1.4 Bulk Soft and Hard Materials 566
10.1.5 Magnetic Thin Films 566
10.1.6 Time-Dependent Changes in Magnetic Properties 567
10.1.7 Definition of Magnetic Properties and Respective Measurement Methods 567
10.2 Soft and Hard Magnetic Materials: (Standard) Measurement Techniques for Properties Related to the B(H) Loop 568
10.2.1 Introduction 568
10.2.2 Properties of Hard Magnetic Materials 571
10.2.3 Properties of Soft Magnetic Materials 577
10.3 Magnetic Characterization in a Pulsed Field Magnetometer (PFM) 589
10.3.1 Industrial Pulsed Field Magnetometer 590
10.3.2 Errors in a PFM 591
10.3.3 Calibration 595
10.3.4 Hysteresis Measurements on Hard Magnetic Materials 597
10.3.5 Anisotropy Measurement 598
10.3.6 Summary: Advantages and Disadvantages of PFM 601
10.4 Properties of Magnetic Thin Films 601
10.4.1 Saturation Magnetization, Spontaneous Magnetization 601
10.4.2 Magneto-Resistive Effects 605
References 607
11 Optical Properties 609
11.1 Fundamentals of Optical Spectroscopy 610
11.1.1 Light Source 610
11.1.2 Photosensors 612
11.1.3 Wavelength Selection 614
11.1.4 Reflection and Absorption 616
11.1.5 Luminescence and Lasers 620
11.1.6 Scattering 624
11.2 Microspectroscopy 627
11.2.1 Optical Microscopy 627
11.2.2 Near-field Optical Microscopy 628
11.2.3 Cathodoluminescence (SEM-CL) 629
11.3 Magnetooptical Measurement 631
11.3.1 Faraday and Kerr Effects 631
11.3.2 Application to Magnetic Flux Imaging 632
11.4 Nonlinear Optics and Ultrashort Pulsed Laser Application 636
11.4.1 Nonlinear Susceptibility 636
11.4.2 Ultrafast Pulsed Laser 640
11.4.3 Time-Resolved Spectroscopy 642
11.4.4 Nonlinear Spectroscopy 645
11.4.5 Terahertz Time-Domain Spectroscopy 647
11.5 Fiber Optics 648
11.5.1 Fiber Dispersion and Attenuation 649
11.5.2 Nonlinear Optical Properties 652
11.5.3 Fiber Bragg Grating 654
11.5.4 Fiber Amplifiers and Lasers 657
11.5.5 Miscellaneous Fibers 660
11.6 Evaluation Technologies for Optical Disk Memory Materials 663
11.6.1 Evaluation Technologies for Phase-Change Materials 663
11.6.2 Evaluation Technologies for MO Materials 669
11.7 Optical Sensing 671
11.7.1 Distance Measurement 671
11.7.2 Displacement Measurement 673
11.7.3 3-D Shape Measurement 673
11.7.4 Flow Measurement 674
11.7.5 Temperature Measurement 675
11.7.6 Optical Sensing for the Human Body 677
References 678
D Materials Performance Testing 686
12 Corrosion 687
12.1 Background 688
12.1.1 Classification of Corrosion 689
12.1.2 Corrosion Testing 690
12.2 Conventional Electrochemical Test Methods 691
12.2.1 Principles of Electrochemical Measurements and Definitions 691
12.2.2 Some Definitions 693
12.2.3 Electrochemical Thermodynamics 694
12.2.4 Complex Formation 696
12.2.5 Electrochemical Kinetics 696
12.2.6 The Charge-Transfer Overvoltage 696
12.2.7 Elementary Reaction Steps in Sequence,the Hydrogen Evolution Reaction 699
12.2.8 Two Different Reactions at One Electrode Surface 701
12.2.9 Local Elements 703
12.2.10 Diffusion Control of Electrode Processes 704
12.2.11 Rotating Disc Electrode (RDE) and Rotating Ring-Disc Electrode (RRDE) 706
12.2.12 Ohmic Drops 709
12.2.13 Measurement of Ohmic Drops and Potential Profiles Within Electrolytes 710
12.2.14 Nonstationary Methods, Pulse Measurements 712
12.2.15 Concluding Remarks 715
12.3 Novel Electrochemical Test Methods 715
12.3.1 Electrochemical Noise Analysis 715
12.4 Exposure and On-Site Testing 719
12.5 Corrosion Without Mechanical Loading 719
12.5.1 Uniform Corrosion 720
12.5.2 Nonuniform and Localized Corrosion 721
12.6 Corrosion with Mechanical Loading 725
12.6.1 Stress Corrosion 726
12.6.2 Corrosion Fatigue 729
12.7 Hydrogen-Induced Stress Corrosion Cracking 734
12.7.1 Electrochemical Processes 735
12.7.2 Theories of H-Induced Stress Corrosion Cracking 736
12.7.3 Environment and Material Parameters 737
12.7.4 Fractographic and Mechanical Effects of HISCC 737
12.7.5 Test Methods 738
12.8 High-Temperature Corrosion 738
12.8.1 Main Parameters in High-Temperature Corrosion 738
12.8.2 Test Standards or Guidelines 739
12.8.3 Mass Change Measurements 741
12.8.4 Special High-Temperature Corrosion Tests 749
12.8.5 Post-Test Evaluation of Test Pieces 751
12.8.6 Concluding Remarks 752
12.9 Inhibitor Testing and Monitoring of Efficiency 752
12.9.1 Investigation and Testing of Inhibitors 753
12.9.2 Monitoring of Inhibitor Efficiency 754
12.9.3 Monitoring Inhibition from Corrosion Rates 756
References 758
13 Friction and Wear 762
13.1 Definitions and Units 762
13.1.1 Definitions 763
13.1.2 Types of Wear 763
13.1.3 Units for Wear 764
13.2 Selection of Friction and Wear Tests 766
13.2.1 Approach to Tribological Testing 766
13.2.2 Test Parameters 767
13.2.3 Interaction with Other Degradation Mechanisms 769
13.2.4 Experimental Planning and Presentation of Results 769
13.3 Tribological Test Methods 770
13.3.1 Sliding Motion 770
13.3.2 Rolling Motion 770
13.3.3 Abrasion 771
13.3.4 Erosion by Solid Particles 772
13.3.5 Scratch Testing 772
13.4 Friction Measurement 773
13.4.1 Friction Force Measurement 773
13.4.2 Strain Gauge Load Cells and Instrumentation 773
13.4.3 Piezoelectric Load Sensors 774
13.4.4 Other Force Transducers 774
13.4.5 Sampling and Digitization Errors 775
13.4.6 Calibration 775
13.4.7 Presentation of Results 777
13.5 Quantitative Assessment of Wear 778
13.5.1 Direct and Indirect Quantities 778
13.5.2 Mass Loss 778
13.5.3 Dimensional Change 778
13.5.4 Volume Loss 779
13.5.5 Other Methods 781
13.5.6 Errors and Reproducibility in Wear Testing 781
13.6 Characterization of Surfaces and Debris 783
13.6.1 Sample Preparation 783
13.6.2 Microscopy, Profilometry and Microanalysis 784
13.6.3 Wear Debris Analysis 786
References 786
14 Biogenic Impact on Materials 788
14.1 Modes of Materials - Organisms Interactions 789
14.1.1 Biodeterioration/Biocorrosion 789
14.1.2 Biodegradation 790
14.1.3 Summary 790
14.1.4 Role of Biocides 790
14.2 Biological Testing of Wood 793
14.2.1 Attack by Microorganisms 795
14.2.2 Attack by Insects 800
14.3 Testing of Organic Materials 808
14.3.1 Biodeterioration 808
14.3.2 Biodegradation 810
14.3.3 Paper and Textiles 822
14.4 Biological Testing of Inorganic Materials 830
14.4.1 Inorganic Materials Subject to Biological Attack 830
14.4.2 The Mechanisms of Biological Attack on Inorganic Materials 832
14.4.3 Organisms Acting on Inorganic Materials 833
14.4.4 Biogenic Impact on Rocks 837
14.4.5 Biogenic Impact on Metals, Glass, Pigments 842
14.4.6 Control and Prevention of Biodeterioration 843
14.5 Coatings and Coating Materials 845
14.5.1 Susceptibility of Coated Surfaces to Fungal and Algal Growth 845
14.6 Reference Organisms 852
14.6.1 Chemical and Physiological Characterization 852
14.6.2 Genomic Characterization 853
References 857
15 Material-Environment Interactions 864
15.1 Materials and the Environment 864
15.1.1 Environmental Impact of Materials 864
15.1.2 Environmental Impact on Polymeric Materials 867
15.2 Emissions from Materials 879
15.2.1 General 879
15.2.2 Types of Emissions 879
15.2.3 Influences on the Emission Behavior 880
15.2.4 Emission Test Chambers 881
15.2.5 Air Sampling from Emission Test Chambers 882
15.2.6 Identification and Quantification of Emissions 883
15.2.7 Time Behavior and Ageing 885
15.2.8 Secondary Emissions 888
15.3 Fire Physics and Chemistry 888
15.3.1 Ignition 888
15.3.2 Combustion 892
15.3.3 Fire Temperatures 894
15.3.4 Materials Subject to Fire 896
15.3.5 Fire Testing and Fire Regulations 897
References 902
16 Performance Control: Nondestructive Testing and Reliability Evaluation 906
16.1 Nondestructive Evaluation 907
16.1.1 Visual Inspection 907
16.1.2 Ultrasonic Examination: Physical Background 908
16.1.3 Application Areas of Ultrasonic Examination 913
16.1.4 Magnetic Particle Inspection 916
16.1.5 Liquid Penetrant Inspection 917
16.1.6 Eddy-Current Testing 918
16.2 Industrial Radiology 919
16.2.1 Fundamentals of Radiology 920
16.2.2 Particle-Based Radiological Methods 925
16.2.3 Film Radiography 926
16.2.4 Digital Radiological Methods 927
16.2.5 Applications of Radiology for Public Safety and Security 933
16.3 Computerized Tomography - Application to Organic Materials 934
16.3.1 Principles of X-ray Tomography 934
16.3.2 Detection of Macroscopic Defects in Materials 936
16.3.3 Detection of the Damage of Composites on the Mesoscale: Application Examples 937
16.3.4 Observation of Elastomers at the Nanoscale 938
16.3.5 Application Assessment of CT with a Medical Scanner 939
16.4 Computerized Tomography - Application to Inorganic Materials 940
16.4.1 High-Energy CT 940
16.4.2 High-Resolution CT 940
16.4.3 Synchrotron CT 941
16.4.4 Dimensional Control of Engine Components 942
16.5 Computed Tomography - Application to Composites and Microstructures 946
16.5.1 Refraction Effect 946
16.5.2 Refraction Techniques Applying X-ray Tubes 947
16.5.3 3-D Synchrotron Refraction Computed Tomography 948
16.5.4 Conclusion 951
16.6 Structural Health Monitoring - Embedded Sensors 951
16.6.1 Basics of Structural Health Monitoring 951
16.6.2 Fiber-Optic Sensing Techniques 954
16.6.3 Piezoelectric Sensing Techniques 964
16.7 Characterization of Reliability 968
16.7.1 Statistical Treatment of Reliability 970
16.7.2 Weibull Analysis 971
16.7.3 Reliability Test Strategies 975
16.7.4 Accelerated Lifetime Testing 978
16.7.5 System Reliability 981
16.7.6 System Reliability Estimation in Practice 983
16.A Appendix 986
References 987
E Modeling and Simulation Methods 992
17 Molecular Dynamics 993
17.1 Basic Idea of Molecular Dynamics 993
17.1.1 Time Evolution of the Equations of Motion 993
17.1.2 Constraints on the Simulation Systems 996
17.1.3 Control of Temperature and Pressure 998
17.1.4 Interaction Potentials 1003
17.1.5 Physical Observables 1005
17.2 Diffusionless Transformation 1006
17.2.1 Martensitic Transformation 1006
17.2.2 Transformations in Nanoclusters 1009
17.2.3 Solid-State Amorphization 1011
17.3 Rapid Solidification 1013
17.3.1 Glass-Formation by Liquid Quenching 1013
17.3.2 Annealing of Amorphous Alloys 1017
17.3.3 Glass-Forming Ability of Alloy Systems 1022
17.4 Diffusion 1024
17.4.1 Diffusion in Crystalline Phases 1024
17.4.2 Diffusion in Liquid and Glassy Phases 1026
17.5 Summary 1028
References 1028
18 Continuum Constitutive Modeling 1031
18.1 Phenomenological Viscoplasticity 1031
18.1.1 General Models of Viscoplasticity 1031
18.1.2 Inelasticity Models 1033
18.1.3 Model Performance 1034
18.2 Material Anisotropy 1036
18.2.1 Description of Material Anisotropy 1036
18.2.2 Initial Anisotropy 1037
18.2.3 Induced Anisotropy 1039
18.3 Metallothermomechanical Coupling 1041
18.3.1 Phase Changes 1041
18.3.2 Numerical Methodology 1043
18.3.3 Applications to Heat Treatment and Metal Forming 1043
18.4 Crystal Plasticity 1044
18.4.1 Single-Crystal Model 1044
18.4.2 Grain Boundary Sliding 1047
18.4.3 Inhomogeneous Deformation 1047
References 1048
19 Finite Element and Finite Difference Methods 1051
19.1 Discretized Numerical Schemes for FEM and FDM 1053
19.2 Basic Derivations in FEM and FDM 1055
19.2.1 Finite Difference Method (FDM) 1055
19.2.2 Finite Element Method (FEM) 1056
19.3 The Equivalence of FEM and FDM Methods 1059
19.4 From Mechanics to Mathematics: Equilibrium Equations and Partial Differential Equations 1060
19.4.1 Heat Conduction Problem in the Two-Dimensional Case 1061
19.4.2 Elastic Solid Problem in the Three-Dimensional Case 1061
19.5 From Mathematics to Mechanics: Characteristic of Partial Differential Equations 1065
19.5.1 Elliptic Type 1066
19.5.2 Parabolic Type 1066
19.5.3 Hyperbolic Type 1066
19.6 Time Integration for Unsteady Problems 1067
19.6.1 FDM 1067
19.6.2 FEM 1068
19.7 Multidimensional Case 1069
19.7.1 Finite Difference Method 1069
19.7.2 Finite Element Method 1070
19.8 Treatment of the Nonlinear Case 1073
19.9 Advanced Topics in FEM and FDM 1073
19.9.1 Preprocessing 1073
19.9.2 Postprocessing 1074
19.9.3 Numerical Error 1074
19.9.4 Relatives of FEM and FDM 1075
19.9.5 Matrix Calculation and Parallel Computations 1075
19.9.6 Multiscale Method 1077
19.10 Free Codes 1077
References 1077
20 The CALPHAD Method 1079
20.1 Outline of the CALPHAD Method 1080
20.1.1 Description of Gibbs Energy 1080
20.1.2 Equilibrium Conditions 1082
20.1.3 Evaluation of Thermodynamic Parameters 1083
20.2 Incorporation of the First-principles Calculations into the CALPHAD Approach 1084
20.2.1 Outline of the First-principles Calculations 1084
20.2.2 Gibbs Energies of Solution Phases Derived by the First-principles Calculations 1085
20.2.3 Thermodynamic Analysis of the Gibbs Energies Based on the First-principles Calculations 1089
20.2.4 Construction of Stable and Metastable Phase Diagrams 1089
20.2.5 Application to More Complex Cases 1091
20.3 Prediction of Thermodynamic Properties of Compound Phases with First-principles Calculations 1097
20.3.1 Thermodynamic Analysis of the Fe-Al-C System 1097
20.3.2 Thermodynamic Analysis of the Co-Al-C and Ni-Al-C Systems 1101
References 1108
21 Phase Field Approach 1109
21.1 Basic Concept of the Phase-Field Method 1110
21.2 Total Free Energy of Microstructure 1111
21.2.1 Chemical Free Energy 1111
21.2.2 Gradient Energy 1113
21.2.3 Elastic Strain Energy 1115
21.2.4 Free Energy for Ferromagnetic and Ferroelectric Phase Transition 1119
21.3 Solidification 1120
21.3.1 Pure Metal 1120
21.3.2 Alloy 1122
21.4 Diffusion-Controlled Phase Transformation 1123
21.4.1 Cahn-Hilliard Diffusion Equation 1123
21.4.2 Spinodal Decomposition and Ostwald Ripening 1125
21.5 Structural Phase Transformation 1126
21.5.1 Martensitic Transformation 1126
21.5.2 Tweed-Like Structure and Twin Domain Formations 1126
21.5.3 Twin Domain Growth Under External Stress and Magnetic Field 1127
21.6 Microstructure Evolution 1128
21.6.1 Grain Growth and Recrystallization 1128
21.6.2 Ferroelectric Domain Formation with a Dipole-Dipole Interaction 1129
21.6.3 Modeling Complex Nanogranular Structure Formation 1130
21.6.4 Dislocation Dynamics 1130
21.6.5 Crack Propagation 1131
References 1132
22 Monte Carlo Simulation 1134
22.1 Fundamentals of the Monte Carlo Method 1134
22.1.1 Boltzmann Weight 1135
22.1.2 Monte Carlo Technique 1135
22.1.3 Random Numbers 1136
22.1.4 Finite-Size Effects 1137
22.1.5 Nonequilibrium Relaxation Method 1138
22.2 Improved Algorithms 1138
22.2.1 Reweighting Algorithms 1138
22.2.2 Cluster Algorithm and Extensions 1139
22.2.3 Hybrid Monte Carlo Method 1140
22.2.4 Simulated Annealing and Extensions 1141
22.2.5 Replica Monte Carlo 1142
22.3 Quantum Monte Carlo Method 1143
22.3.1 Suzuki-Trotter Formalism 1143
22.3.2 World-Line Approach 1143
22.3.3 Cluster Algorithm 1144
22.3.4 Continuous-Time Algorithm 1145
22.3.5 Worm Algorithm 1146
22.3.6 Auxiliary Field Approach 1147
22.3.7 Projector Monte Carlo Method 1147
22.3.8 Negative-Sign Problem 1149
22.3.9 Other Exact Methods 1150
22.4 Bicritical Phenomena in O(5) Model 1150
22.4.1 Hamiltonian 1151
22.4.2 Phase Diagram 1151
22.4.3 Scaling Theory 1152
22.5 Superconductivity Vortex State 1154
22.5.1 Model Hamiltonian 1155
22.5.2 First Order Melting 1155
22.5.3 Continuous Melting: {protect unhbox voidb@x hbox {B}} || ab Plane 1158
22.6 Effects of Randomness in Vortex States 1160
22.6.1 Point-Like Defects 1160
22.6.2 Columnar Defects 1161
22.7 Quantum Critical Phenomena 1163
22.7.1 Quantum Spin Chain 1163
22.7.2 Mott Transition 1164
22.7.3 Phase Separation 1165
References 1166
Acknowledgements 1175
About the Authors 1176
Detailed Contents 1200
Subject Index 1217

Erscheint lt. Verlag 22.7.2011
Reihe/Serie Springer Handbooks
Springer Handbooks
Zusatzinfo MCCXXXII, 32 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management
Schlagworte Materials Measurement • Micorstructural Analysis • Molecular Modelling • Quality Control, Reliability, Safety and Risk • Standardization • Validation
ISBN-10 3-642-16641-5 / 3642166415
ISBN-13 978-3-642-16641-9 / 9783642166419
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 75,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99