Critical Point Theory for Lagrangian Systems (eBook)

eBook Download: PDF
2011 | 2012
XII, 188 Seiten
Springer Basel (Verlag)
978-3-0348-0163-8 (ISBN)

Lese- und Medienproben

Critical Point Theory for Lagrangian Systems - Marco Mazzucchelli
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange's reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.

1 Lagrangian and Hamiltonian systems.- 2 Functional setting for the Lagrangian action.- 3 Discretizations.- 4 Local homology and Hilbert subspaces.- 5 Periodic orbits of Tonelli Lagrangian systems.- A An overview of Morse theory.-Bibliography.- List of symbols.- Index.

Erscheint lt. Verlag 16.11.2011
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo XII, 188 p.
Verlagsort Basel
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte Euler-Lagrange equations • Lagrangian dynamics • Morse Theory • periodic orbits
ISBN-10 3-0348-0163-7 / 3034801637
ISBN-13 978-3-0348-0163-8 / 9783034801638
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99