Information Theory and Statistical Learning (eBook)

eBook Download: PDF
2008 | 2009
X, 439 Seiten
Springer US (Verlag)
978-0-387-84816-7 (ISBN)

Lese- und Medienproben

Information Theory and Statistical Learning -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'Information Theory and Statistical Learning' presents theoretical and practical results about information theoretic methods used in the context of statistical learning.

The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of contexts. Each chapter is written by an expert in the field. The book is intended for an interdisciplinary readership working in machine learning, applied statistics, artificial intelligence, biostatistics, computational biology, bioinformatics, web mining or related disciplines.

Advance Praise for 'Information Theory and Statistical Learning':

'A new epoch has arrived for information sciences to integrate various disciplines such as information theory, machine learning, statistical inference, data mining, model selection etc. I am enthusiastic about recommending the present book to researchers and students, because it summarizes most of these new emerging subjects and methods, which are otherwise scattered in many places.' Shun-ichi Amari, RIKEN Brain Science Institute, Professor-Emeritus at the University of Tokyo


"e;Information Theory and Statistical Learning"e; presents theoretical and practical results about information theoretic methods used in the context of statistical learning. The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of contexts. Each chapter is written by an expert in the field. The book is intended for an interdisciplinary readership working in machine learning, applied statistics, artificial intelligence, biostatistics, computational biology, bioinformatics, web mining or related disciplines.Advance Praise for "e;Information Theory and Statistical Learning"e;:"e;A new epoch has arrived for information sciences to integrate various disciplines such as information theory, machine learning, statistical inference, data mining, model selection etc. I am enthusiastic about recommending the present book to researchers and students, because it summarizes most of these new emerging subjects and methods, which are otherwise scattered in many places."e; Shun-ichi Amari, RIKEN Brain Science Institute, Professor-Emeritus at the University of Tokyo

Algorithmic Probability: Theory and Applications.- Model Selection and Testing by the MDL Principle.- Normalized Information Distance.- The Application of Data Compression-Based Distances to Biological Sequences.- MIC: Mutual Information Based Hierarchical Clustering.- A Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information.- Information Approach to Blind Source Separation and Deconvolution.- Causality in Time Series: Its Detection and Quantification by Means of Information Theory.- Information Theoretic Learning and Kernel Methods.- Information-Theoretic Causal Power.- Information Flows in Complex Networks.- Models of Information Processing in the Sensorimotor Loop.- Information Divergence Geometry and the Application to Statistical Machine Learning.- Model Selection and Information Criterion.- Extreme Physical Information as a Principle of Universal Stability.- Entropy and Cloning Methods for Combinatorial Optimization, Sampling and Counting Using the Gibbs Sampler.

Erscheint lt. Verlag 24.11.2008
Zusatzinfo X, 439 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Theorie / Studium Kryptologie
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Algorithmic Probability • algorithms • combinatorial optimization • complex networks • Data Compression • Entropy • Information • Information Theory • Kernel Method • machine learning • Model Selection • Optimization • Shannon • stability • Statistical Learning
ISBN-10 0-387-84816-9 / 0387848169
ISBN-13 978-0-387-84816-7 / 9780387848167
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kryptographie und Geschichte

von Wolfgang Killmann; Winfried Stephan

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
39,99