Biomaterials Science -  Allan S. Hoffman,  Jack E. Lemons,  Buddy D. Ratner,  Frederick J. Schoen

Biomaterials Science (eBook)

An Introduction to Materials in Medicine
eBook Download: PDF | EPUB
2004 | 2. Auflage
864 Seiten
Elsevier Science (Verlag)
978-0-08-047036-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
86,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications.

All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials.

* Provides comprehensive coverage of principles and applications of all classes of biomaterials

* Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics

* Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field

* Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites

* Endorsed by the Society for Biomaterials
The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. Provides comprehensive coverage of principles and applications of all classes of biomaterials Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites Endorsed by the Society for Biomaterials

INTRODUCTION: Biomaterials Science: A Multidisciplinary Endeavor

BUDDY D. RATNER, ALLAN S. HOFFMAN, FREDERICK J. SCHOEN, JACK E. LEMONS

BIOMATERIALS AND BIOMATERIALS SCIENCE


Biomaterials Science: An Introduction to Materials in Medicine addresses the properties and applications of materials (synthetic and natural) that are used in contact with biological systems. These materials are commonly called biomaterials. Biomaterials, an exciting field with steady, strong growth over its approximately half century of existence, encompasses aspects of medicine, biology, chemistry, and materials science. It sits on a foundation of engineering principles. There is also a compelling human side to the therapeutic and diagnostic application of biomaterials. This textbook aims to (1) introduce these diverse elements, particularly focusing on their interrelationships rather than differences and (2) systematize the subject into a cohesive curriculum.

We title this textbook Biomaterials Science: An Introduction to Materials in Medicine to reflect, first, that the book highlights the scientific and engineering fundamentals behind biomaterials and their applications, and second, that this volume contains sufficient background material to guide the reader to a fair appreciation of the field of biomaterials. Furthermore, every chapter in this textbook can serve as a portal to an extensive contemporary literature. The magnitude of the biomaterials endeavor, its interdisciplinary scope, and examples of biomaterials applications will be revealed in this introductory chapter and throughout the book.

Although biomaterials are primarily used for medical applications (the focus of this text), they are also used to grow cells in culture, to assay for blood proteins in the clinical laboratory, in equipment for processing biomolecules for biotechnological applications, for implants to regulate fertility in cattle, in diagnostic gene arrays, in the aquaculture of oysters, and for investigational cell-silicon “biochips.” How do we reconcile these diverse uses of materials into one field? The common thread is the interaction between biological systems and synthetic or modified natural materials.

In medical applications, biomaterials are rarely used as isolated materials but are more commonly integrated into devices or implants. Although this is a text on materials, it will quickly become apparent that the subject cannot be explored without also considering biomedical devices and the biological response to them. Indeed, both the effect of the materials/device on the recipient and that of the host tissues on the device can lead to device failure. Furthermore, a biomaterial must always be considered in the context of its final fabricated, sterilized form. For example, when a polyurethane elastomer is cast from a solvent onto a mold to form the pump bladder of a heart assist device, it can elicit different blood reactions than when injection molding is used to form the same device. A hemodialysis system serving as an artificial kidney requires materials that must function in contact with a patient’s blood and also exhibit appropriate membrane permeability and mass transport characteristics. It also must employ mechanical and electronic systems to pump blood and control flow rates.

Because of space limitations and the materials focus of this work, many aspects of device design are not addressed in this book. Consider the example of the hemodialysis system. The focus here is on membrane materials and their biocompatibility; there is little coverage of mass transport through membranes, the burst strength of membranes, flow systems, and monitoring electronics. Other books and articles cover these topics in detail.

The words “biomaterial” and “biocompatibility” have already been used in this introduction without formal definition. A few definitions and descriptions are in order and will be expanded upon in this and subsequent chapters.

A definition of “biomaterial” endorsed by a consensus of experts in the field, is:

A biomaterial is a nonviable material used in a medical device, intended to interact with biological systems (Williams, 1987).

If the word “medical” is removed, this definition becomes broader and can encompass the wide range of applications suggested above.

If the word “nonviable” is removed, the definition becomes even more general and can address many new tissue-engineering and hybrid artificial organ applications where living cells are used.

“Biomaterials science” is the physical and biological study of materials and their interaction with the biological environment. Traditionally, the most intense development and investigation have been directed toward biomaterials synthesis, optimization, characterization, testing, and the biology of host–material interactions. Most biomaterials introduce a nonspecific, stereotyped biological reaction. Considerable current effort is directed toward the development of engineered surfaces that could elicit rapid and highly precise reactions with cells and proteins, tailored to a specific application.

Indeed, a complementary definition essential for understanding the goal (i.e., specific end applications) of biomaterials science is that of “biocompatibility.”

Biocompatibility is the ability of a material to perform with an appropriate host response in a specific application (Williams, 1987).

Examples of “appropriate host responses” include the resistance to blood clotting, resistance to bacterial colonization, and normal, uncomplicated healing. Examples of specific applications include a hemodialysis membrane, a urinary catheter, or a hip-joint replacement prosthesis. Note that the hemodialysis membrane might be in contact with the patient’s blood for 3 hours, the catheter may be inserted for a week, and the hip joint may be in place for the life of the patient.

This general concept of biocompatilility has been extended recently in the broad approach called “tissue engineering” in which in-vitro and in-vivo pathophysiological processes are harnessed by careful selection of cells, materials, and metabolic and biomechanical conditions to regenerate functional tissues.

Thus, in these definitions and discussion, we are introduced to considerations that set biomaterials apart from most materials explored in materials science. Table 1 lists a few applications for synthetic materials in the body. It includes many materials that are often classified as “biomaterials.” Note that metals, ceramics, polymers, glasses, carbons, and composite materials are listed. Such materials are used as molded or machined parts, coatings, fibers, films, foams and fabrics. Table 2 presents estimates of the numbers of medical devices containing biomaterials that are implanted in humans each year and the size of the commercial market for biomaterials and medical devices.

TABLE 1 Some Applications of Synthetic Materials and Modified Natural Materials in Medicine

Application Types of materials
Skeletal system  
 Joint replacements (hip, knee) Titanium, Ti–Al–V alloy, stainless steel, polyethylene
 Bone plate for fracture fixation Stainless steel, cobalt–chromium alloy
 Bone cement Poly(methyl methacrylate)
 Bony defect repair Hydroxylapatite
 Artificial tendon and ligament Teflon, Dacron
 Dental implant for tooth fixation Titanium, Ti–Al–V alloy, stainless steel, polyethylene
  Titanium, alumina, calcium phosphate
Cardiovascular system  
 Blood vessel prosthesis Dacron, Teflon, polyurethane
 Heart valve Reprocessed tissue, stainless steel, carbon
 Catheter Silicone rubber, Teflon, polyurethane
Organs  
 Artificial heart Polyurethane
 Skin repair template Silicone–collagen composite
 Artificial kidney (hemodialyzer) Cellulose, polyacrylonitrile
 Heart–lung machine Silicone rubber
Senses  
 Cochlear replacement Platinum electrodes
 Intraocular lens Poly(methyl methacrylate), silicone rubber, hydrogel
 Contact lens Silicone-acrylate, hydrogel
 Corneal bandage Collagen, hydrogel

TABLE 2 The Biomaterials and Healthcare Market—Facts and Figures (per year) (U.S....

Erscheint lt. Verlag 18.8.2004
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Zoologie
Technik Maschinenbau
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-047036-X / 008047036X
ISBN-13 978-0-08-047036-8 / 9780080470368
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 24,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 26,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
99,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99