Advances in Magnetic and Optical Resonance -

Advances in Magnetic and Optical Resonance (eBook)

Warren S. Warren (Herausgeber)

eBook Download: PDF | EPUB
1996 | 1. Auflage
397 Seiten
Elsevier Science (Verlag)
978-0-08-052630-0 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
195,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.
Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

The Theoretical and Practical Limits of Resolution in Multiple-Pulse High-Resolution NMR of Solids


Ralf Prigl; Ulrich Haeberlen    Arbeitsgruppe Molekülkristalle Max-Planck-Institut für Medizinische Forschung 69028 Heidelberg, Germany

I Introduction


Multiple-pulse (m.p.) sequences for high-resolution nuclear magnetic resonance (NMR) in solids were introduced in 1968 by the MIT NMR group (Waugh et al., 1968). At that time the idea was to apply the m.p. sequences to strongly coupled spin 2 systems, in practice, to samples with abundant 19F nuclei or protons and no other nuclei with nonzero spin. The “new” quantities that the m.p. technique promised to make amenable to measurement were the six independent elements of the symmetric part of the chemical shift or shielding tensor σ. This prospect was the driving impetus for the development of the m.p. technique. For the theoretical description of the effect of m.p. sequences on the evolution of spin systems during times that are of prime interest in m.p. spectroscopy, the so-called average Hamiltonian theory (AHT; Haeberlen and Waugh, 1968), including the Magnus expansion (Magnus, 1954), proved to be most fruitful, whereas for the long-time behavior the more general Floquet theory must be invoked (Maricq, 1990). In particular the search for ever more effective m.p. sequences was invariably guided by and benefited from the AHT (Mansfield, 1970; Rhim et al., 1973a, b; 1974; Burum et al., 1979a, b). This search boomed in the 1970s and then declined, but it still continues (Bodnyeva et al., 1987; Cory, 1991; Liu et al., 1990; Iwamiya et al., 1992).

Judging by the original goal, the m.p. technique has been successful. Although it is true that a full m.p. study of a (proton) shielding tensor is still not a routine measurement, the technique has been applied to a variety of compounds, both in the form of powder samples and single crystals, and our current quite extensive knowledge of proton and fluorine shielding tensors σ originates to a large extent from these studies (Haeberlen, 1976, 1985; Mehring, 1983). However, this knowledge is far from being complete. In particular, we have no satisfactory general picture of the orientation of the principal axes system of a proton shielding tensor σ and even if we know this orientation, for example, from symmetry considerations, it may still be unclear which of the least, intermediate, and largest principal components of σ goes with which principal axis. It is obvious that a deeper understanding of the (proton) chemical shift, including all its anisotropic aspects, can only be reached in a concert of experiment and theory. With this rather trivial fact in mind, it is astonishing that, on the one hand, progress of the experimenters’ abilities to measure proton shielding tensors has hardly seen any response from the (quantum chemical) theoretical community and that, on the other hand, interest in line-narrowing m.p. sequences and measurements of proton and fluorine shielding tensors has dwindled over the years.

We think that the main reason for this decline of interest is the limited analytical value of proton shielding tensors. Even if one has the necessary equipment (few people have it) and the necessary know-how, it takes a considerable effort to actually measure a proton shielding tensor. For analytical purposes, the combination of line-narrowing m.p. sequences with magic angle sample spinning (CRAMPS) applied to a powder sample will usually be the method of choice (Scheler et al., 1976; Burum et al., 1993; for a recent review, see Maciel et al., 1990). However, the combination with magic angle sample spinning deprives the m.p. technique of its most beautiful inherent virtue: sensitivity to the tensorial aspects of shielding. This feature bears out only if single crystals of known orientation are studied. Apparently the very necessity of working with single crystals, not to speak of the trouble of orientating them, has scared away many potential applicants of line-narrowing m.p. sequences. However, we would like to stress that shielding tensors are not the only motivation for developing and applying line-narrowing m.p. sequences. For instance, good use of m.p. sequences has been made in spin diffusion experiments for selecting specific proton sites that give valuable information about the miscibility of polymer blends (Schmidt-Rohr et al., 1990). Another promising application is two-dimensional exchange spectroscopy with proton labeling by anisotropic chemical shifts, which is complementary to the corresponding deuteron technique, where the nuclear sites are labeled by their quadrupole splittings (see, e.g., Müller et al., 1994).

Experimentalists working on the advance of high-resolution NMR in solids have been frustrated over many years by the apparent existence of a “magic wall” that prevented them from improving the resolution in their m.p. spectra beyond a certain limit. This situation was all the more frustrating because the AHT seemed to predict that the linewidths in m.p. spectra drop with a certain power n of the pulse spacing τ if the m.p. sequence is run faster. This prediction has prompted workers in various laboratories to invest great efforts in improving their spectrometers, that is, power amplifiers, probes, receivers, etc., so that m.p. sequences can be run with ever shorter pulse spacings τ (e.g., Haeberlen et al., 1977). For the sake of defining the pulse spacing τ as well as the cycle time tc and the pulsewidth tp, we show in Fig. 1 the prototype of all line-narrowing m.p. sequences, the so-called WAHUHA sequence (Waugh et al., 1968).

Fig. 1 The basic line-narrowing m.p. sequence and definition of the pulse spacing τ, the pulsewidth tp, and the cycle time tc. The pulses embraced by tc constitute a cycle because they impose a zero net rotation on the nuclear magnetization. The cycle is repeated over and over and the NMR signal is “sampled” at integer multiples of tc.

The first experiments with this sequence were done at MIT with τ = 6 μs. By the time of the first published report on high-resolution solid state NMR (Waugh et al., 1968) we had already reduced the pulse spacing to 4 μs. On our current spectrometer operating at 270 MHz we can run m.p. sequences with τ as short as 1 μs. However, the return on all of these efforts was generally disappointing: although the resolution usually improved when τ was reduced, the progress was never near that expected from the AHT. We point out that, in principle, this theory and restriction to low-order terms in the Magnus expansion should work better as τ is made shorter. A specific study of the dependence on τ of the resolution in m.p. spectra was made by the ETH group in Zürich (Burum et al., 1981). The authors varied τ between 14 and 4 μs and found that resolution even deteriorated when τ was reduced below a certain limit, which depended on the particular sequence. It was felt that this limit also depended on the particular spectrometer on which the experiments were carried out. The interpretation was that, as τ is reduced, pulse errors increase in importance and eventually dominate the resolution in the m.p. spectrum. A numerical example may help to illustrate this point: Suppose a m.p. sequence is run with τ = 1 μs and a linewidth of 50 Hz is achieved. Both numbers are realistic for our spectrometer. The latter implies that the response of the spin system to the m.p. sequence must be followed for at least 20 ms. After that time more than 13.000 pulses will have hit the spins. Obviously it is a very difficult task to keep the spins on their prescribed trajectories while hitting them with so many pulses. If the spins go astray, resolution deteriorates (La Traviata …).

The purpose of this report is to explore, on the one hand, the theoretical and, on the other, the practical limitations of high-resolution solid state proton and fluorine NMR. Of course, we are not the first ones to inquire about these limitations. In the mid-1970s both the Caltech and, in particular, the Nottingham solid state NMR groups published major papers on this subject (Rhim et al., 1973, Garroway et al., 1975). In those days a crystal of calcium fluoride (CaF2) was the standard sample for demonstrating the line-narrowing capability of m.p. sequences. The experiments then were carried out on “low” frequency spectrometers (54 MHz at Caltech and 9 MHz in Nottingham), and people still had to fight hard with “vagaries” of the spectrometer electronics. The basis of the theoretical reasoning of both groups was, of course, the AHT. We feel that the conclusions drawn are not...

Erscheint lt. Verlag 6.12.1996
Sprache englisch
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Optik
Technik
ISBN-10 0-08-052630-6 / 0080526306
ISBN-13 978-0-08-052630-0 / 9780080526300
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 44,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

eBook Download (2023)
De Gruyter (Verlag)
49,95