Ground Penetrating Radar Theory and Applications -

Ground Penetrating Radar Theory and Applications (eBook)

Harry M. Jol (Herausgeber)

eBook Download: PDF | EPUB
2008 | 1. Auflage
544 Seiten
Elsevier Trade Monographs (Verlag)
978-0-08-095184-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
137,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years. The development of GPR spans aspects of geophysical science, technology, and a wide range of scientific and engineering applications. It is the breadth of applications that has made GPR such a valuable tool in the geophysical consulting and geotechnical engineering industries, has lead to its rapid development, and inspired new areas of research in academia. The topic of GPR has gone from not even being mentioned in geophysical texts ten years ago to being the focus of hundreds of research papers and special issues of journals dedicated to the topic. The explosion of primary literature devoted to GPR technology, theory and applications, has lead to a strong demand for an up-to-date synthesis and overview of this rapidly developing field. Because there are specifics in the utilization of GPR for different applications, a review of the current state of development of the applications along with the fundamental theory is required. This book will provide sufficient detail to allow both practitioners and newcomers to the area of GPR to use it as a handbook and primary research reference.

*Review of GPR theory and applications by leaders in the field
*Up-to-date information and references
*effective handbook and primary research reference for both experienced practitioners and newcomers

Front Cover 1
Ground Penetrating Radar: Theory and Applications 4
Copyright Page 5
Table of Contents 6
Preface 14
Contributors 16
Part I Ground Penetrating Radar (GPR) Principles 20
Chapter 1 Electromagnetic Principles of Ground Penetrating Radar 22
1.1 Introduction 23
1.2 Ground Penetrating Radar Basic Principles 24
1.2.1 Overview 24
1.2.2 Maxwell's equations 25
1.2.3 Constitutive equations 25
1.2.4 Material properties 26
1.3 Wave Nature of Electromagnetic Fields 27
1.3.1 Wave properties 29
1.3.2 Ground penetrating radar source near an interface 30
1.3.3 Reflection, refraction, and transmission at interfaces 32
1.3.4 Resolution and zone of influence 33
1.3.5 Scattering attenuation 35
1.4 Signal Measurement 36
1.4.1 Time ranges and bandwidth 37
1.4.2 Center frequency 38
1.4.3 Ground penetrating radar signal acquisition 39
1.4.4 Characterizing system response 39
1.4.5 Recording dynamic range 41
1.4.6 Antennas 42
1.4.7 Antenna directivity 43
1.4.8 Antenna shielding 46
1.5 Survey Methodology 48
1.5.1 Sampling criteria 48
1.5.2 Ground penetrating radar surveys 49
1.5.3 Common-offset reflection survey 49
1.5.4 Multioffset common midpoint/wide-angle reflection and refraction velocity sounding design 50
1.5.5 Transillumination surveys 50
1.6 Data Analysis and Interpretation 52
1.6.1 Dewow 53
1.6.2 Time gain 53
1.6.3 Deconvolution 54
1.6.4 Migration 55
1.6.5 Topographic correction 55
1.6.6 Two-dimensional and three-dimensional data visualization 56
1.7 Summary 56
Chapter 2 Electrical and Magnetic Properties of Rocks, Soils and Fluids 60
2.1 Introduction 60
2.2 Electromagnetic Material Properties: Basic Theory 62
2.3 Permittivity and Conductivity – The Electrical Parameters of Dielectrics 63
2.3.1 Permittivity – e 64
2.3.2 Conductivity – s 73
2.3.3 Permeability µ – the magnetic parameters of dielectrics 74
2.4 Material Properties – Relationship to Electromagnetic Wave Characteristics 76
2.4.1 Loss factor and skin depth 78
2.5 The Properties of Real Materials – Practical Evaluations 79
2.6 Characterising the Response of Real Materials 81
2.6.1 Basic mixing models 82
2.6.2 Volumetric and inclusion-based mixing models 83
2.7 Summary 85
Acknowledgements 86
Chapter 3 Ground Penetrating Radar Systems and Design 92
3.1 Introduction and Background 92
3.2 Methodology – Types of Ground Penetrating Radar 93
3.2.1 Impulse 94
3.2.2 Swept frequency-modulated continuous wave 94
3.2.3 Stepped frequency-modulated continuous wave 95
3.2.4 Gated, stepped frequency-modulated continuous wave 95
3.3 Radio Frequency Specifications and Definitions 96
3.3.1 Dynamic range 96
3.3.2 Bandwidth 97
3.3.3 Range resolution 97
3.3.4 Lateral resolution 98
3.3.5 Unambiguous range 98
3.4 General Design Criteria for Ground Penetrating Radar 99
3.4.1 System performance 100
3.5 Impulse Ground Penetrating Radar 100
3.5.1 Theory of operation: Impulse radar 100
3.5.2 System design parameters: impulse radar 103
3.5.3 Implementation of an impulse ground penetrating radar 104
3.6 Continuous-Wave Ground Penetrating Radar 105
3.6.1 Theory of operation – stepped-frequency, continuous-wave radar 105
3.6.2 System design parameters: stepped-frequency radar 111
3.6.3 Implementation of a gated, stepped-frequency, ground penetrating radar 112
Chapter 4 Antennas 118
4.1 Introduction 118
4.2 Basic Antenna Parameters 121
4.2.1 Energy transfer from antennas 121
4.2.2 Gain 123
4.2.3 Directivity 124
4.2.4 Coupling energy into the ground 124
4.2.5 Antenna efficiency 125
4.2.6 Sidelobes and back lobes 125
4.2.7 Bandwidth 125
4.2.8 Polarisation – linear, elliptical, circular 126
4.2.9 Antenna phase centre 127
4.2.10 Antenna patterns 127
4.2.11 Time sidelobes and ring-down 128
4.2.12 Antenna footprint 129
4.3 Antennas for Ground Penetrating Radar 131
4.3.1 Introduction 131
4.3.2 Coupling into a dielectric 132
4.3.3 Time domain antennas 134
4.3.4 Frequency domain antennas 143
4.3.5 Array antennas 147
4.4 Summary 152
4.5 Definitions 152
Chapter 5 Ground Penetrating Radar Data Processing, Modelling and Analysis 160
5.1 Introduction 160
5.2 Background and Practical Principles of Ground Penetrating Radar Data Processing 162
5.3 Ground Penetrating Radar Data Processing: Developing Good Practice 164
5.4 Basic Ground Penetrating Radar Data Processing Steps 167
5.4.1 Data/trace editing and 'rubber-band' interpolation 167
5.4.2 Dewow filtering 169
5.4.3 Time-zero correction 169
5.4.4 Filtering 171
5.4.5 Deconvolution 177
5.4.6 Velocity analysis and depth conversion 177
5.4.7 Elevation or topographic corrections 178
5.4.8 Gain functions 180
5.4.9 Migration 183
5.4.10 Advanced imaging and analysis tools 185
5.4.11 Attribute analysis 186
5.4.12 Numerical modelling 187
5.5 Processing, Imaging and Visualisation: Concluding Remarks 190
Acknowledgements 191
Part II Environmental Applications 196
Chapter 6 Soils, Peatlands, and Biomonitoring 198
6.1 Introduction 198
6.2 Soils 199
6.2.1 Soil properties that affect the performance of ground penetrating radar 199
6.2.2 Soil suitability maps for ground penetrating radar 200
6.2.3 Ground penetrating data and soil surveys 204
6.2.4 Uses of ground penetrating radar in organic soils and peatlands 209
6.3 Biomonitoring 212
Chapter 7 The Contribution of Ground Penetrating Radar to Water Resource Research 222
7.1 Introduction 222
7.2 Petrophysics 225
7.3 Hydrostratigraphic Characterization 228
7.4 Distribution/Zonation of Flow and Transport Parameters 233
7.5 Moisture Content Estimation 236
7.6 Monitoring Dynamic Hydrological Processes 243
7.6.1 Recharge/moisture content in the vadose zone 244
7.6.2 Water table detection/monitoring 247
7.6.3 Solute transport in fractures 248
7.6.4 Studies of the hyporheic corridor 250
7.6.5 Studies of the rhizosphere 251
7.6.6 Carbon gas emissions from soils 251
7.7 Conclusions 256
Chapter 8 Contaminant Mapping 266
8.1 Introduction 266
8.2 Contaminant Types 267
8.3 Electrical Properties of Contaminated Rock and Soil 268
8.3.1 Electrical properties of NAPLs 268
8.3.2 Electrical properties of soil and rock with NAPL contamination 269
8.3.3 Biodegradation effects 272
8.3.4 Inorganics 272
8.4 Typical Distribution of Contaminants 273
8.4.1 DNAPL 273
8.4.2 LNAPL 274
8.4.3 Inorganics 274
8.4.4 Saturated and unsaturated zone 275
8.5 GPR Methodology 275
8.6 Data Processing and Interpretation 276
8.6.1 Visualization 276
8.6.2 Trace attributes 276
8.6.3 Data differencing 276
8.6.4 AVO analysis 277
8.6.5 Detection based on frequency-dependent properties 277
8.6.6 Quantitative estimates of NAPL 277
8.7 Case Studies 278
8.7.1 Controlled DNAPL injection 279
8.7.2 Controlled LNAPL injection 281
8.7.3 Accidental spill sites 281
8.7.4 Leachate and waste disposal site characterization 283
8.8 Summary 284
Terms for Glossary 288
Part III Earth Science Applications 290
Chapter 9 Ground Penetrating Radar in Aeolian Dune Sands 292
9.1 Introduction 293
9.2 Sand Dunes 293
9.3 Survey Design 296
9.3.1 Line spacing 296
9.3.2 Step size 296
9.3.3 Orientation 297
9.3.4 Survey direction 297
9.3.5 Vertical resolution 297
9.4 Topography 298
9.4.1 Topographic surveys 299
9.4.2 Topographic correction 300
9.4.3 Apparent dip 300
9.5 Imaging Sedimentary Structures and Dune Stratigraphy 300
9.6 Radar Facies 301
9.7 Radar Stratigraphy and Bounding Surfaces 302
9.8 Aeolian Bounding Surfaces 304
9.8.1 Reactivation surfaces 304
9.8.2 Superposition surfaces 304
9.8.3 Interdune surfaces 305
9.9 Dune Age and Migration 307
9.10 Stratigraphic Analysis 307
9.11 Ancient Aeolian Sandstones 309
9.12 Three-Dimensional Images 309
9.13 Pedogenic Alteration and Early Diagenesis 310
9.13.1 Evaporites 310
9.13.2 Environmental noise 310
9.13.3 Diffractions 312
9.13.4 The water table 312
9.13.5 Multiples 312
9.14 Conclusions 313
Acknowledgments 313
Chapter 10 Coastal Environments 318
10.1 Introduction 318
10.2 Methodology 320
10.3 Ground Penetrating Radar Strengths in Coastal Environments 322
10.4 Ground Penetrating Radar Limitations in Coastal Environments 323
10.5 Ground Penetrating Radar Studies in Coastal Environments 324
10.6 Examples of Ground Penetrating Radar Images from Coastal Environments 324
10.6.1 Record of coastal progradation 325
10.6.2 Signatures of coastal erosion 326
10.6.3 Coastal Paleochannels 327
10.6.4 Ground penetrating radar signal response to lithological anomalies in coastal dunes 329
10.6.5 Deltas 331
10.6.6 Reservoir characterization – hydrocarbon and hydrogeology 332
10.7 Summary 333
Acknowledgments 334
Chapter 11 Advances in Fluvial Sedimentology using GPR 342
11.1 Introduction 342
11.2 Scales of Fluvial Deposits and GPR Resolution 343
11.3 Examples of Use of GPR in Fluvial Sedimentology 346
11.3.1 South Esk, Scotland 346
11.3.2 Calamus, Nebraska 348
11.3.3 Brahmaputra (Jamuna), Bangladesh 350
11.3.4 Niobrara, Nebraska 355
11.3.5 South Saskatchewan, Canada 359
11.3.6 Sagavanirktok, northern Alaska 362
11.3.7 Fraser and Squamish Rivers, Canada 368
11.3.8 Pleistocene outwash deposits in Europe 369
11.3.9 Mesozoic deposits of SW USA 372
11.4 Concluding Discussion 373
Acknowledgments 374
Chapter 12 Glaciers and Ice Sheets 380
12.1 Introduction 380
12.2 Antarctica 382
12.2.1 Alpine glaciers: Dry valleys 384
12.2.2 Polar firn: West Antarctica 386
12.2.3 Englacial stratigraphy: West Antarctica 390
12.2.4 Ice shelf: McMurdo Sound 392
12.2.5 Crevasses: Ross Ice Shelf 395
12.3 Alaska 398
12.3.1 Temperate valley glacier: Matanuska Glacier 399
12.3.2 Temperate valley glacier: Gulkana Glacier 401
12.3.3 Temperate firn: Bagley Ice Field, Alaska 403
12.3.4 Temperate hydrology: Black Rapids Glacier 404
12.4 Summary 407
Part IV Engineering and Societal Applications 412
Chapter 13 NDT Transportation 414
13.1 Introduction 415
13.2 GPR Hardware and Accessories 416
13.2.1 General 416
13.2.2 Air-coupled systems 417
13.2.3 Ground-coupled systems 417
13.2.4 Antenna configurations 418
13.2.5 Antenna and GPR system testing 418
13.2.6 Accessory equipment 419
13.3 Data Collection 420
13.3.1 General 420
13.3.2 Data collection setups and files 422
13.3.3 Positioning 423
13.3.4 Reference sampling 424
13.4 Data Processing and Interpretation 424
13.4.1 General 424
13.4.2 GPR data preprocessing 425
13.4.3 Air-coupled antenna data processing 426
13.4.4 Ground-coupled data processing 427
13.4.5 Determining dielectric values or signal velocities 429
13.4.6 Interpretation – automated vs. user controlled systems 430
13.4.7 Interpretation of structures and other objects 430
13.5 Integrated GPR Data Analysis with Other Road Survey Data 432
13.5.1 General 432
13.5.2 GPR and FWD 432
13.5.3 Profilometer data 433
13.5.4 GPS, digital video and photos 434
13.5.5 Other data 435
13.6 GPR Applications on Roads and Streets 435
13.6.1 General 435
13.6.2 Subgrade surveys, site investigations 435
13.6.3 Unbound pavement structures 438
13.6.4 Bound pavement structures and wearing courses 439
13.6.5 GPR in QC/QA 442
13.6.6 Special applications 444
13.7 Bridges 444
13.7.1 General 444
13.7.2 Bridge deck surveys 445
13.7.3 Other bridge applications 447
13.8 Railways 448
13.8.1 General 448
13.8.2 Data collection from railway structures 449
13.8.3 Ballast surveys 450
13.8.4 Subgrade surveys, site investigations 451
13.9 Airfields 452
13.10 Summary and Recommendations 454
Chapter 14 Landmine and Unexploded Ordnance Detection and Classification with Ground Penetrating Radar 464
14.1 Introduction 464
14.2 Electromagnetic Analysis 465
14.3 System Design 474
14.4 GPR Data Processing for Landmine/UXO Detection and Classification 481
14.5 Fusion with Other Sensors 488
14.6 Overall Performance of GPR as an UXO/Landmine Sensor 491
14.7 Conclusion 492
Chapter 15 GPR Archaeometry 498
15.1 Introduction 498
15.2 Field Methods for Archaeological Acquisition 500
15.3 Imaging Techniques for Archaeology 501
15.4 Depth Determination 503
15.5 Case Histories 504
15.5.1 Case History No. 1: The Forum Novum, Tiber Valley, Italy 505
15.5.2 Case History No. 2: The Villa of Emperor Trajanus of Rome, Italy 507
15.5.3 Case History No. 3: Wroxeter Roman Town, England 513
15.5.4 Case History No. 4: Saitobaru Burial Mound No. 100, Japan 514
15.5.5 Case History No. 5: Saitobaru Burial Mound No. 111, Japan 517
15.5.6 Case History No. 6: Monks Mound, Cahokia, Illinois 520
15.5.7 Case History No. 7: Jena Choctaw Tribal Cemetery, Louisiana 521
15.5.8 Case History No. 8: Glaumbaer Viking Age, Iceland 524
Acknowledgments 526
Index 528
Errata 544

Chapter 2 Electrical and Magnetic Properties of Rocks, Soils and Fluids

Nigel J. Cassidy

School of Physical and Geographical Sciences, William Smith Building, Keele University, Staffordshire, ST5 5BG, United Kingdom

E-mail address:n.j.cassidy@esci.keele.ac.uk

Acknowledgements

I would like to thank the reviewers, Maksim Bano and Steven Arcone for their constructive and thoughtful comments, which have helped improve this chapter considerably.

2.1 Introduction


The ability of ground penetrating radar (GPR to provide ‘real-time’, high-resolution, stratigraphically related, cross-sectional images of the subsurface is the technique’s unique selling point and even novice users can quickly start to interpret GPR sections with some degree of confidence. As such, it is unrivalled amongst all the near-surface geophysical techniques and, arguably, is one of the most popular non-invasive subsurface characterisation tools for engineers, archaeologists and geologists. Unfortunately, the ease of both use and data interpretation is also GPR’s downfall, as many inexperienced practitioners fail to fully appreciate the true nature of GPR wave propagation and its interaction with the subsurface materials. Key to this is the understanding that a GPR section is not a picture or an image of the subsurface per se but is, instead, the time-dependent, recorded response of the subsurface materials to the propagation of electromagnetic (EM) energy across a relatively narrow range of radio wave frequencies, typically 10   MHz–2   GHz. Consequently, it is important that users understand the physical meaning of a material’s electrical and magnetic properties and how these relate to GPR signal attenuation and wave propagation velocities. As such, the following chapter covers topics such as permittivity, conductivity, lossy dielectrics, polarisation and relaxation mechanisms, etc., all in the context of practical GPR.

As a topic in its own right, the characterisation and analysis of materials at radio frequencies (or dielectric spectroscopy as it is often referred to) is much older than GPR, with some of the leading scientists of the past 100 years being involved in ground-breaking discoveries on the nature of matter and its interaction with EM energy. Much of our practical understanding, through either quantum or classical molecular approaches, can be traced back to the middle of the nineteenth century and the first few decades of the twentieth century, with the pioneering work of Debye (1929) still being relevant to GPR research today. The development of airborne radar during the Second World War led to a dramatic increase in radio frequency (RF), dielectric-related research, as did the development of microwave ovens in the late 1970s. Nowadays, thanks to our insatiable desire for new and improved mobile telecommunications and computing devices, the subject is as popular as ever. A quick review of the text and journal literature will reveal the true extent and depth of the subject with specialist disciplines in dielectric spectroscopy, telecommunication electronics, antenna design, material science, theoretical physics and colloidal science, all with their own terminology and approaches to describing the same phenomena: the interaction of propagating EM energy with materials. From a GPR users’ perspective, this vast pool of knowledge and information can be bewildering, and it is often difficult to extract any practical understanding of the subject, even from the most basic of texts. This chapter conveys the topic from a practical perspective without resorting to detailed mathematical concepts, derivations, or proofs and is, therefore, less theoretically rigorous than some readers may like. I provide appropriate background and further reading for those with a particular theoretical bent and have broken down the subject into theoretical aspects (the microscopic and molecular/atomic nature of materials and their behaviour in EM fields) and more practical aspects (the GPR-related properties of materials, mixtures and methods for their measurement). Simplifications and assumptions have to be made and as we are primarily interested in GPR frequencies, the discussion and the scope of the subject are restricted to a relatively narrow frequency range of approximately 10   MHz–2   GHz. Important aspects, such as the polarisation and relaxation phenomena of water molecules, include higher-frequency effects, but, in general, optical (very high frequency) or low–frequency, EM-related phenomena will not be covered. Readers unfamiliar with the physical and mathematical concept of complex numbers with real and imaginary components may need to undertake a little revision, as these are key to the understanding of frequency-dependent material behaviour.

In basic terms, our understanding of EM waves, materials and their mutual interactions can be classified into either electrical phenomena (electric fields, permittivity and conductivity, etc.) or magnetic phenomena (magnetic fields, permeability, magnetic susceptibility, etc.). To some extent, this traditional classification still exists in many fields of EM study, and geophysicists, RF engineers, material scientists and physicists all seem to have their own favoured descriptive approaches and nomenclature, which can be contradictory and confusing to the uninitiated. In the following discussions, only common GPR-related terminology will be used (e.g., the symbol epsilon, ?, will be used for the complex-valued permittivity and the relative, real component, ?r, used instead of the ‘dielectric constant’, ?), and mathematical formula and symbology will follow geophysical conventions rather than engineering texts. Ultimately, my brief account does not do the subject full justice, either theoretically or mathematically. For a more in-depth account of EM material behaviour, the seminal work of Von Hippel (1954) is an ideal place to start, along with the texts of Daniel (1967), Hill et al. (1969) and Hasted (1973). More recent texts of Gladkov (2003), Kremer and Schonhals (2002) and Von Hippel (1995) are recommended for the specialist reader, and for those with a very healthy library budget, the excellent, if expensive, two-volume set Handbook of Low and High Dielectric Constant Materials and Their Applications by Nalwa (1999) is a must.

2.2 Electromagnetic Material Properties: Basic Theory


The starting point for any discussion on the nature of materials under the excitation of a propagating RF, EM wave is Maxwell’s EM field equations [Equations (2.1)(2.4)] and more importantly the constituent relations [Equations (2.5)(2.7)]. These vector equations quantitatively describe the spatially and temporally varying coupled electric and magnetic fields and their interdependence. They are valid for the whole of the frequency spectrum and describe the EM energy storage and dissipation process for all materials. In their classical, time domain, differential form they are given by Equations (2.1)(2.7) for heterogeneous, isotropic, linear and stationary media (Balanis, 1989):

Faraday’s Law of Induction


     (2.1)


Maxwell’s modified circuit Law


     (2.2)


Gauss’ theorem in electrostatics


     (2.3)


Gauss’ theorem in magnetostatics


     (2.4)


where

E – electric field strength vector (in volts per metre – V/m)

H – magnetic field strength vector (in amperes per metre – A/m)

D – electric flux density vector (in coulombs per metre squared – C/m2)

B – magnetic flux density vector (in Tesla – T)

J – current density vector (in amperes per metre squared – A/m2)

? – charge density (in coulombs per metre cubed – C/m3)

? – del vector operator

×– vector cross product

• – vector dot product

The associated constitutive relations introduce the relevant material property parameters of...

Erscheint lt. Verlag 8.12.2008
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-095184-8 / 0080951848
ISBN-13 978-0-08-095184-3 / 9780080951843
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich