Inorganic Polymeric and Composite Membranes -

Inorganic Polymeric and Composite Membranes (eBook)

Structure, Function and Other Correlations
eBook Download: PDF | EPUB
2011 | 1. Auflage
394 Seiten
Elsevier Science (Verlag)
978-0-444-53729-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Inorganic, Polymeric and Composite Membranes:   Structure-Function and Other Correlations covers the latest technical advances in topics such as structure-function relationships for polymeric, inorganic, and composite membranes.  Leading scientists provide in depth reviews and disseminate cutting-edge research results  on correlations but also discuss new materials, characterization, modelling, computational simulation, process concepts, and spectroscopy.

  • Unified by fundamental general correlations theme

  • Many graphical examples

  • Covers all major membrane types

  • Inorganic, Polymeric and Composite Membranes: Structure-Function and Other Correlations covers the latest technical advances in topics such as structure-function relationships for polymeric, inorganic, and composite membranes. Leading scientists provide in depth reviews and disseminate cutting-edge research results on correlations but also discuss new materials, characterization, modelling, computational simulation, process concepts, and spectroscopy. Unified by fundamental general correlations theme Many graphical examples Covers all major membrane types

    Front Cover 1
    Inorganic, Polymeric and Composite Membranes: Structure, Function and Other Correlations 4
    Copyright 5
    Dedication 6
    Contents 8
    Contributors 16
    Preface 20
    Chapter 1: Correlations 22
    Introduction 22
    Scientific laws and correlations 24
    Principles 24
    Theories 24
    Laws 25
    Properties 27
    Effects 27
    Equations 28
    Dimensionless Numbers 31
    Criteria 32
    Approximations, Factor, Curves 32
    Correlations 34
    Important properties in membrane science 35
    Examples of correlations in the membrane separation field 37
    Summary 43
    Acknowledgments 43
    References 43
    Chapter 2: Review of Silica Membranes for Hydrogen Separation Prepared by Chemical Vapor Deposition 46
    Introduction 46
    Silica Membranes for Hydrogen Separation 46
    Chemical Vapor Deposition: Principles 48
    Synthesis of Silica Membranes via Chemical Vapor Deposition 50
    Silica Membranes Supported on Vycor Glass 58
    Silica Membranes Supported on Alumina 69
    Conclusions 77
    Acknowledgments 77
    References 77
    Chapter 3: Amorphous Silica Membranes for H2 Separation Prepared by Chemical Vapor Deposition on Hollow Fiber Supports 82
    Introduction 82
    Experimental 86
    Results and discussion 87
    Pure Hollow Fiber Support Properties 88
    Mesoporous Silica Layer 90
    Amorphous .-Alumina Layer 93
    Silica Precursor and Carrier Gas Flow Rate Effects on the Membrane Separation Performance 94
    Gas Separation Mechanism 95
    Conclusions 96
    Acknowledgments 97
    References 97
    Chapter 4: Ab Initio Studies of Silica-Based Membranes: Activation Energy of Permeation 100
    Introduction 100
    Previous theoretical studies on dense silica-based membranes 101
    Method of calculation 102
    Results and discussion 103
    Conclusions 110
    Acknowledgments 110
    References 110
    Chapter 5: Review of CO2/CH4 Separation Membranes 112
    Introduction 112
    Discussion 114
    Zeolite Membranes and Carbon Molecular Sieves 114
    Silica Membranes 118
    Polymeric Membranes 119
    Mixed-matrix Membranes 123
    Supported ionic Liquid and Polyionic Membranes 124
    Overall results 128
    Conclusions 130
    Acknowledgments 131
    References 131
    Chapter 6: Gas Permeation Properties of Helium, Hydrogen, and Polar Molecules Through Microporous Silica... 138
    Introduction 138
    Experimental 140
    Fabrication of Silica and Co-Doped Silica Membranes by Sol-Gel Method 140
    Gas Permeation/Separation Measurements for Silica Membranes 141
    Results and discussion 141
    Improved Hydrothermal Stability of Amorphous Silica Membranes 141
    Helium and Hydrogen Permeation Properties Through Amorphous Silica Membranes 146
    Permeation Properties of Polar Molecules (NH3, H2O) Through Amorphous Silica Membranes 148
    Conclusions 154
    References 155
    Chapter 7: Correlation Between Pyrolysis Atmosphere and Carbon Molecular Sieve Membrane Performance Properties 158
    Introduction 158
    Theory and background 159
    Transport in CMS Membranes 159
    Structure of CMS Membranes 160
    Effect of Pyrolysis Atmosphere on Separation Performance of CMS Membranes 161
    Experimental 163
    Materials 163
    Characterization Methods 166
    Results and discussion 167
    Correlation Between Oxygen Exposure and CMS Separation Performance 167
    Correlation Between Oxygen Concentration and CMS Separation Performance 182
    Possible Mechanism of Oxygen "Doping" Process During Pyrolysis 190
    Conclusion 191
    Acknowledgements 192
    References 192
    Chapter 8: Review on Prospects for Energy Saving in Distillation Process with Microporous Membranes 196
    Introduction 196
    Potential of membrane separation technology for large-scale reduction in energy consumption 197
    Why zeolite membranes are promising 200
    Synthesis technique of zeolite membranes 202
    Seeding Technique (Secondary Growth Method) 202
    Masking Technique 203
    Use of SDA for Microstructural Optimization 204
    De-watering technology using zeolite membranes 205
    De-watering of Alcohol 205
    De-watering of Organic Acids 207
    De-watering for C1 Chemistry 208
    Concluding remarks 209
    References 210
    Chapter 9: Xylene Separation Performance of Composition-Gradient MFI Zeolite Membranes 216
    Introduction 216
    Experimental 219
    Bilayer Membrane Synthesis and Characterization 219
    Pervaporation Experiments 221
    Results and discussion 222
    Membrane Characteristics 222
    Binary Pervaporation Through Single and Bilayer Membranes 223
    Reversal of Bilayer Structure 228
    Stability at Higher PX Feed Concentrations 230
    Conclusions 231
    Acknowledgments 232
    References 232
    Chapter 10: Membrane Extraction for Biofuel Production 234
    Introduction 234
    Removal of Acetic Acid from Biomass Hydrolysates 236
    Extraction of 5-Hydroxymethylfurfural 238
    Glycerol Extraction 239
    Material and methods 239
    Removal of Acetic Acid from Biomass Hydrolysates 240
    HMF Extraction 242
    Glycerol Extraction 242
    Results 242
    Conclusions 251
    Acknowledgments 252
    References 252
    Chapter 11: A Review of Mixed Ionic and Electronic Conducting Ceramic Membranes as Oxygen Sources for High-Temperature Reactors 256
    Introduction 256
    General attributes of oxygen-conducting MIEC ceramic materials 257
    Oxygen Nonstoichiometry 257
    Self-Adjusting Phase Equilibria 258
    Chemical Expansivity 259
    Microstructure of Oxygen-MIEC Ceramics 260
    Common oxygen-MIEC membrane materials 261
    Fluorites 261
    Perovskites 262
    SCF-Based Materials 264
    Dual-Phase Composite Materials 269
    Membrane Modifications to Improve Oxygen Flux 270
    Surface Modifications 273
    Membrane Thickness Reduction 274
    MIEC membranes for synthesis gas production 276
    Synthesis Gas Production Overview 276
    Benefits of MIEC Membranes for Synthesis Gas Production 278
    Overview of Work to Date 279
    Effect of Reaction Temperature on Membrane Performance 281
    Effect of Reaction Environment on Membrane Oxygen Flux 282
    Conclusions 284
    Acknowledgments 285
    References 285
    Chapter 12: Critical Factors Affecting Oxygen Permeation Through Dual-phase Membranes 296
    Introduction 296
    Design of dual-phase membranes with high stability and permeability 299
    Experimental investigation of dual-phase membranes 301
    Pure Electronic Conductor or Mixed Conductor? 301
    Surface Exchange 302
    Preparation Methods for Powders 303
    Sintering Temperature 307
    Ratio Between the Two Phases 309
    Other Factors 310
    Conclusions 311
    Acknowledgments 311
    References 312
    Chapter 13: High Temperature Gas Separations Using High Performance Polymers 316
    Introduction 316
    Experimental 318
    Instrumentation 318
    Permeability Gas Testing 318
    Positron Annihilation Lifetime Spectroscopy 319
    Results and discussion 319
    Conclusions 327
    Acknowledgments 327
    References 327
    Chapter 14: Using First-principles Models to Advance Development of Metal Membranes for High Temperature Hydrogen Purificatication 330
    Introduction 330
    DFT-based modeling of crystalline metal membranes 332
    Cluster Expansion Methods 334
    Applications of DFT Calculations to Crystalline Membrane Materials 335
    Amorphous metal membranes 337
    Computational Approaches for Amorphous Metals 338
    Amorphous Structures 338
    Binding Energy of Interstitial H in Amorphous Alloys 339
    H-H Interactions 340
    H Solubility in Amorphous Alloys 341
    Hydrogen Diffusion in Amorphous Alloys 343
    Corrected Diffusivities 344
    The Thermodynamic Correction Factor 345
    Hydrogen Permeability Through Amorphous Alloys 347
    Conclusion 348
    Acknowledgments 349
    References 349
    Chapter 15: High Performance Ultrafiltration Membranes: Pore Geometry and Charge Effects 354
    Introduction 354
    Pore geometry effects 356
    Fluid Flow 356
    Solute Transport 357
    Pore Size Distribution Effects 360
    Electrostatic interactions 362
    Fluid Flow 362
    Solute Transport 365
    Concentration polarization effects 368
    Conclusions 371
    Acknowledgment 372
    References 372
    Index 374

    Membrane Science and Technology, Vol. 14, Suppl. (C), 2011

    ISSN: 0927-5193

    doi: 10.1016/B978-0-444-53728-7.00002-1

    Chapter 2 Review of Silica Membranes for Hydrogen Separation Prepared by Chemical Vapor Deposition

    Sheima Jatib Khatib1, S. Ted Oyama1,2,*, Kátia R. de Souza1,3 and Fábio B. Noronha3

    1 Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

    2 Department of Chemical Systems Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

    3 Instituto Nacional de Tecnologia—INT, Av. Venezuela 82, CEP 20081-312, Rio de Janeiro, Brazil

    *Corresponding author:

    E-mail address: oyama@vt.edu, ted_oyama@chemsys.t.u-tokyo.ac.jp

    Abstract

    The application of inorganic silica membranes for sulfur hexafluoride selectivity separation at elevated temperatures has attracted much attention due to their good permselectivity and mechanical strength. These membranes are usually in the form of a thin layer of silica (selective layer) deposited on a thick porous support. One of the methods which is successfully used for deposition of the silica layers is the chemical vapor deposition (CVD), due to its versatility and reproducibility as well as high selectivities obtained with the membranes formed by this method. This chapter starts with a brief description of the basic principles of CVD and its application in the preparation of silica membranes, followed by a complete literature review which surveys the studies that have been carried out on supported silica membranes prepared through CVD and applied in hydrogen separation with two of the most commonly used supports, Vycor glass and alumina.

    Keywords

    silica membrane, CVD, hydrogen separation, inorganic membrane, Vycor, alumina, hydrogen permeability, permselectivity

    Introduction


    Silica Membranes for Hydrogen Separation


    Hydrogen is an important industrial feedstock for the production of fuels and many chemicals [1,2] and in fuel cell applications [3], and the purification of hydrogen is an important unit operation. Hydrogen separation using membranes has emerged as an important technology, and although polymeric membranes have seen some application [4], they have limited permeance and selectivity, and inorganic materials have attracted attention. The most well-known material is palladium, but it suffers from high costs, and susceptibility to metallic failure by hardening, and poisoning by sulfur and other extraneous elements. This review focuses on silica-based membranes prepared by chemical vapor deposition (CVD), which are potentially low cost, are thermally stable, and are immune to poisons.

    Practical application of these membranes requires high permeation rates as well as good selectivities, which can be obtained with membranes of low thickness and an absence of cracks and pinholes. In addition, the membranes must be mechanically strong for use in practical equipment and have long life and resistance to poisons. To meet these requirements (mechanical strength and high permeability), ceramic membranes can be produced by applying a thin film of the selective material on a thick porous support, usually in tubular form. For this purpose, film deposition technology has been exploited in membrane science.

    For potential industrial applications like high-temperature hydrogen separation and simultaneous reaction and separation, inorganic silica membranes offer unique advantages, such as high selectivities, and high stability at elevated temperatures and in chemically aggressive atmospheres. And, for this reason, considerable attention has been paid to them by researchers [5-18]. Moreover, the application of these inorganic membranes in membrane reactors, using catalytically active or passive membranes has proved to be promising, since yields above equilibrium have been obtained by the continuous separation of the hydrogen product from the reaction system [19-25]. Figure 2.1 shows a typical membrane reactor applied to the steam reforming of ethanol.

    Figure 2.1 Schematic diagram of a membrane reactor applied to the steam reforming of ethanol reaction.

    The supported silica membranes are made by depositing the separation layer from suitable precursors suspended in a liquid or a gaseous medium. Deposition from the liquid phase involves techniques such as dip coating in polymeric or particulate suspensions (sol–gel technique), while deposition from the gas phase is usually carried out by CVD due to its versatility. Thus, silica membranes are usually in the form of silica layers placed on ceramic supports such as porous Vycor glass [5,10] and alumina [11,12,15-18], and are deposited usually by sol–gel [13-16] techniques or CVD [5-12] of silica precursors. Sol–gel modification provides relatively high gas permeation rates, mainly due to the very thin top layers, in the order of 50–100 nm and a good selectivity as opposed to CVD methods where there is an attendant loss of permeability, though the selectivity is enhanced. The sol–gel method, however, suffers from a lack of reproducibility.

    This review will pay attention to the work that different groups have carried out with supported silica membranes for hydrogen separation prepared by CVD. But before, some basic principles and notions of CVD will be described.

    Chemical Vapor Deposition: Principles


    CVD is a technique that modifies the properties of membrane surfaces by depositing a layer of a solid product of the same or different compound through chemical reactions in a gaseous medium surrounding the component at an elevated temperature. Depending on the type of application, the product can be grown on flat substrates, fibers, or particles.

    Generally, CVD systems include a system for delivering a mixture of reactive and carrier gases, and a heated reaction chamber where film formation occurs. The gas mixture (which typically consists of hydrogen, nitrogen, or argon, and volatile reactive compounds such as metal halides, carbonyls, or alkoxides) is flowed over the substrate that is heated to the desired temperature. Over the past years, different types of CVD methods have been developed, including thermal CVD, plasma-assisted CVD, and laser CVD [26].

    The deposition of coatings by CVD can be achieved in a number of ways such as decomposition, oxidation, hydrolysis, or compound formation. These reactions between various constituents may occur in the vapor phase over the heated substrate, with the products depositing over the surface and forming a film. Most commonly, they proceed by adsorption of the gaseous reactants on the solid substrate followed by surface reactions. Thus, the mechanisms of CVD reactions involve reactions taking place on the solid surface and sometimes in the gas phase. Figure 2.2 illustrates the seven mechanistic steps that have been hypothesized to occur during a vapor deposition process [27].

    Figure 2.2 Schematic diagram of the mechanistic steps that occur during the CVD process: (1) transport of reactant gases into the reaction chamber, (2) intermediate reactants formed from reactant gases, (3) diffusion of reactant gases through the gaseous boundary layer to the substrate, (4) absorption of gases onto the substrate surface, (5) single or multistep reactions at the substrate surface, (6) desorption of product gases from the substrate surface, (7) forced exit of product gases from the system.

    (Figure adapted from Ref. [27]).

    Although CVD procedures of membrane films have not been studied in such detail, empirical conditions for growing good-quality membranes have been identified and developed. All the same, some qualitative principles have been developed to help understand the CVD process for film formation [28]. A possible simplified reaction sequence for deposition is the following:


         (2.1)



         (2.2)



         (2.3)



         (2.4)



         (2.5)


    etc.

    In the scheme, B is an active gas phase intermediate that can react on the solid or can form oligomers in the gas phase. The oligomerization reactions (2.3)-(2.5) can be purely physical, reversible events related to condensation, or can involve bond breaking and formation. The growth of particles in the gas phase follows a nucleation path where a small nucleus is formed and then grows. The surface film formation can follow any number of mechanisms such as island formation, or layer-by-layer growth. In both cases, lowering the reactant concentration will reduce the first-order steps ( 2.1) and (2.2) and more strongly, the oligomer and particle-forming steps (2.3)-(2.5).

    Another possible scheme involves two gaseous reactants, C and D, reacting as...

    Erscheint lt. Verlag 4.5.2011
    Sprache englisch
    Themenwelt Naturwissenschaften Chemie Anorganische Chemie
    Naturwissenschaften Chemie Technische Chemie
    Technik Umwelttechnik / Biotechnologie
    ISBN-10 0-444-53729-5 / 0444537295
    ISBN-13 978-0-444-53729-4 / 9780444537294
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Adobe DRM)
    Größe: 11,0 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Zusätzliches Feature: Online Lesen
    Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    EPUBEPUB (Adobe DRM)
    Größe: 10,2 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: EPUB (Electronic Publication)
    EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Zusätzliches Feature: Online Lesen
    Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    Allgemeine und Anorganische Chemie

    von Erwin Riedel; Christoph Janiak

    eBook Download (2022)
    De Gruyter (Verlag)
    49,95
    Allgemeine und Anorganische Chemie

    von Erwin Riedel; Christoph Janiak

    eBook Download (2022)
    De Gruyter (Verlag)
    49,95