Fast Simulation of Electro-Thermal MEMS (eBook)

Efficient Dynamic Compact Models
eBook Download: PDF
2006 | 2007
XII, 180 Seiten
Springer Berlin (Verlag)
978-3-540-34613-5 (ISBN)

Lese- und Medienproben

Fast Simulation of Electro-Thermal MEMS - Tamara Bechtold, Evgenii B. Rudnyi, Jan G. Korvink
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides the reader with a complete methodology and software environment for creating efficient dynamic compact models for electro-thermal MEMS devices. It supplies the basic knowledge and understanding for using model order reduction at the engineering level. This tutorial is written for MEMS engineers and is enriched with many case studies which equip readers with the know-how to facilitate the simulation of a specific problem.



Tamara Bechtold earned her Dipl.-Ing. degree in electrical engineering and microsystem technology at the University of Bremen, Germany in 2000 and her Dr. Ing. in microsystem simulation at the Institute of Microsystem Technology (IMTEK) in Freiburg, Germany in 2005. Currently, she is working at IMTEK as a post-doctoral researcher. Her research interests include the application of model order reduction to MEMS problems and their efficient system-level simulation.

Evgenii B. Rudnyi graduated from Moscow State University (MSU), Department of Chemistry in 1981, diploma (equiv. M.Sc.) in Chemistry. He received the Candidate of Science (equiv. Ph.D.) degree in physical chemistry in 1985. Dr. Rudnyi was a Research worker, Assistant Professor, and Associated Professor at the Chemistry Department of MSU from 1985 to 2000 and a guest scientist at the National Institute of Standards and Technology (USA) in 1991. Currently, he is working at the Institute of Microsystem Technology (IMTEK) in Freiburg, Germany, as a senior scientist. He is actively involved in the application of model reduction to MEMS problems. He is an author of software mor4ansys that performs model reduction directly for ANSYS models.

Jan G. Korvink earned his Master of Science in computational mechanics at the University of Cape Town, South Africa and read his doctorate at the Swiss Federal Institute of Technology (ETH) in Zurich (Dr. sc. techn. in applied computer science). After he had built up and lead the Microsystem Modeling Group at the Physical Electronics Laboratory, Institute for Quantum Electronics at the ETH he was called upon to join IMTEK (Institute for Microsystem Technology) at the Albert Ludwig University of Freiburg, Germany to hold the Chair of Microsystem Simulation. He is now a vice-dean and chairman of the examination board at the Faculty of Applied Sciences to which IMTEK belongs. Prof. Korvink is author or co-author of more than 130 publications in the field of microsystems and joint-editor of 'Advanced Micro and Nanosystems' [http://www.wiley-vch.de/books/info/amn]. Prof. Korvink is a member of the technical programe committees of several conferences and is a member of ASME. He has been visiting professor at the ETH Zurich, the Ritsumeikan University of Kusatsu, Japan and visiting scientist at the Kyoto University in Kyoto, Japan. His research activities focus on the development of ultra low-cost methods of MEMS production and the modeling for and simulation of micro- and nanosystems.

Tamara Bechtold earned her Dipl.-Ing. degree in electrical engineering and microsystem technology at the University of Bremen, Germany in 2000 and her Dr. Ing. in microsystem simulation at the Institute of Microsystem Technology (IMTEK) in Freiburg, Germany in 2005. Currently, she is working at IMTEK as a post-doctoral researcher. Her research interests include the application of model order reduction to MEMS problems and their efficient system-level simulation. Evgenii B. Rudnyi graduated from Moscow State University (MSU), Department of Chemistry in 1981, diploma (equiv. M.Sc.) in Chemistry. He received the Candidate of Science (equiv. Ph.D.) degree in physical chemistry in 1985. Dr. Rudnyi was a Research worker, Assistant Professor, and Associated Professor at the Chemistry Department of MSU from 1985 to 2000 and a guest scientist at the National Institute of Standards and Technology (USA) in 1991. Currently, he is working at the Institute of Microsystem Technology (IMTEK) in Freiburg, Germany, as a senior scientist. He is actively involved in the application of model reduction to MEMS problems. He is an author of software mor4ansys that performs model reduction directly for ANSYS models. Jan G. Korvink earned his Master of Science in computational mechanics at the University of Cape Town, South Africa and read his doctorate at the Swiss Federal Institute of Technology (ETH) in Zurich (Dr. sc. techn. in applied computer science). After he had built up and lead the Microsystem Modeling Group at the Physical Electronics Laboratory, Institute for Quantum Electronics at the ETH he was called upon to join IMTEK (Institute for Microsystem Technology) at the Albert Ludwig University of Freiburg, Germany to hold the Chair of Microsystem Simulation. He is now a vice-dean and chairman of the examination board at the Faculty of Applied Sciences to which IMTEK belongs. Prof. Korvink is author or co-author of more than 130 publications in the field of microsystems and joint-editor of "Advanced Micro and Nanosystems" [http://www.wiley-vch.de/books/info/amn]. Prof. Korvink is a member of the technical programe committees of several conferences and is a member of ASME. He has been visiting professor at the ETH Zurich, the Ritsumeikan University of Kusatsu, Japan and visiting scientist at the Kyoto University in Kyoto, Japan. His research activities focus on the development of ultra low-cost methods of MEMS production and the modeling for and simulation of micro- and nanosystems.

Dynamic Electro-thermal Simulation of Microsystems.- Overview of Linear Model Order Reduction.- Selected Model Reduction Software.- Application of Model Reduction to Electro-thermal MEMS.- Advanced Development.- References.

Erscheint lt. Verlag 1.11.2006
Reihe/Serie Microtechnology and MEMS
Microtechnology and MEMS
Zusatzinfo XII, 180 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Arnoldi algorithm • Development • Electro-thermal simulation • Environment • MEMS • microelectromechanical system (MEMS) • microsystems • Model • Model order reduction • Simulation • Software
ISBN-10 3-540-34613-9 / 3540346139
ISBN-13 978-3-540-34613-5 / 9783540346135
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99