An Introduction to Differential Geometry with Applications to Elasticity (eBook)

eBook Download: PDF
2006 | 2005
VI, 209 Seiten
Springer Netherland (Verlag)
978-1-4020-4248-5 (ISBN)

Lese- und Medienproben

An Introduction to Differential Geometry with Applications to Elasticity - Philippe G. Ciarlet
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are 'two-dimensional', in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental 'Korn inequality on a surface' and to an 'in?nit- imal rigid displacement lemma on a surface'. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book 'Mathematical Elasticity, Volume III: Theory of Shells', published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are "e;two-dimensional"e;, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental "e;Korn inequality on a surface"e; and to an "e;in?nit- imal rigid displacement lemma on a surface"e;. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book "e;Mathematical Elasticity, Volume III: Theory of Shells"e;, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].

Preface;
Chapter 1. Three-dimensional differential geometry: 1.1. Curvilinear coordinates, 1.2. Metric tensor, 1.3. Volume, areas, and lengths in curvilinear coordinates, 1.4. Covariant derivatives of a vector field, 1.5. Necessary conditions satisfied by the metric tensor; the Riemann curvature tensor, 1.6. Existence of an immersion defined on an open set in R3 with a prescribed metric tensor, 1.7. Uniqueness up to isometries of immersions with the same metric tensor, 1.8. Continuity of an immersion as a function of its metric tensor;
Chapter 2. Differential geometry of surfaces: 2.1. Curvilinear coordinates on a surface, 2.2. First fundamental form, 2.3. Areas and lengths on a surface, 2.4. Second fundamental form; curvature on a surface, 2.5. Principal curvatures; Gaussian curvature, 2.6. Covariant derivatives of a vector field defined on a surface; the Gauss and Weingarten formulas, 2.7. Necessary conditions satisfied by the first and second fundamental forms: the Gauss and Codazzi-Mainardi equations; Gauss' theorema egregium, 2.8. Existence of a surface with prescribed first and second fundamental forms, 2.9. Uniqueness up to proper isometries of surfaces with the same fundamental forms, 2.10.Continuity of a surface as a function of its fundamental forms;
Chapter 3. Applications to three-dimensional elasticity in curvilinear coordinates: 3.1. The equations of nonlinear elasticity in Cartesian coordinates, 3.2. Principle of virtual work in curvilinear coordinates, 3.3. Equations of equilibrium in curvilinear coordinates; covariant derivatives of a tensor field, 3.4. Constitutive equation in curvilinear coordinates, 3.5. The equations of nonlinear elasticity in curvilinear coordinates, 3.6. The equations of linearized elasticity in curvilinear coordinates, 3.7. A fundamental lemma of J.L. Lions, 3.8. Korn's inequalities in curvilinear coordinates, 3.9. Existence and uniqueness theorems in linearizedelasticity in curvilinear coordinates;
Chapter 4. Applications to shell theory: 4.1. The nonlinear Koiter shell equations, 4.2. The linear Koiter shell equations, 4.3. Korn’s inequality on a surface, 4.4. Existence and uniqueness theorems for the linear Koiter shell equations; covariant derivatives of a tensor field defined on a surface, 4.5. A brief review of linear shell theories; References;
Index.

Erscheint lt. Verlag 28.6.2006
Zusatzinfo VI, 210 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie Mechanik
Technik
Schlagworte Curvature • curvilinear coordinates • Differential Geometry • differential geometry of surfaces • elasticity theory • Gaussian curvature • Partial differential equations • shell theory • surface theory
ISBN-10 1-4020-4248-5 / 1402042485
ISBN-13 978-1-4020-4248-5 / 9781402042485
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich