Darboux Transformations in Integrable Systems (eBook)
X, 308 Seiten
Springer Netherland (Verlag)
978-1-4020-3088-8 (ISBN)
Preface.- 1. 1+1 Dimensional Integrable Systems.- 1.1 KdV equation, MKdV equation and their Darboux transformations. 1.1.1 Original Darboux transformation. 1.1.2 Darboux transformation for KdV equation. 1.1.3 Darboux transformation for MKdV equation. 1.1.4 Examples: single and double soliton solutions. 1.1.5 Relation between Darboux transformations for KdV equation and MKdV equation. 1.2 AKNS system. 1.2.1 2 × 2 AKNS system. 1.2.2 N × N AKNS system. 1.3 Darboux transformation. 1.3.1 Darboux transformation for AKNS system. 1.3.2 Invariance of equations under Darboux transformations. 1.3.3 Darboux transformations of higher degree and the theorem of permutability. 1.3.4 More results on the Darboux matrices of degree one. 1.4 KdV hierarchy, MKdV-SG hierarchy, NLS hierarchy and AKNS system with u(N) reduction. 1.4.1 KdV hierarchy. 1.4.2 MKdV-SG hierarchy. 1.4.3 NLS hierarchy. 1.4.4 AKNS system with u(N) reduction. 1.5 Darboux transformation and scattering, inverse scattering theory. 1.5.1 Outline of the scattering and inverse scattering theory for the 2 × 2 AKNS system . 1.5.2 Change of scattering data under Darboux transformations for su(2) AKNS system. 2. 2+1 Dimensional Integrable Systems.- 2.1 KP equation and its Darboux transformation. 2.2 2+1 dimensional AKNS system and DS equation. 2.3 Darboux transformation. 2.3.1 General Lax pair. 2.3.2 Darboux transformation of degree one. 2.3.3 Darboux transformation of higher degree and the theorem of permutability. 2.4 Darboux transformation and binary Darboux transformation for DS equation. 2.4.1 Darboux transformation for DSII equation. 2.4.2 Darboux transformation and binary Darboux transformation for DSI equation. 2.5 Application to 1+1 dimensional Gelfand-Dickey system. 2.6 Nonlinear constraints and Darboux transformation in 2+1 dimensions. 3. N + 1 Dimensional Integrable Systems.- 3.1 n + 1 dimensional AKNS system. 3.1.1 n + 1 dimensional AKNS system. 3.1.2Examples. 3.2 Darboux transformation and soliton solutions. 3.2.1 Darboux transformation. 3.2.2 u(N) case. 3.2.3 Soliton solutions. 3.3 A reduced system on Rn. 4. Surfaces of Constant Curvature, Bäcklund Congruences.- 4.1 Theory of surfaces in the Euclidean space R3. 4.2 Surfaces of constant negative Gauss curvature, sine-Gordon equation and Bäcklund transformations. 4.2.1 Relation between sine-Gordon equation and surface of constant negative Gauss curvature in R3. 4.2.2 Pseudo-spherical congruence. 4.2.3 Bäcklund transformation. 4.2.4 Darboux transformation. 4.2.5 Example. 4.3 Surface of constant Gauss curvature in the Minkowski space R2,1 and pseudo-spherical congruence. 4.3.1 Theory of surfaces in the Minkowski space R2,1. 4.3.2 Chebyshev coordinates for surfaces of constant Gauss curvature. 4.3.3 Pseudo-spherical congruence in R2,1. 4.3.4 Bäcklund transformation and Darboux transformation for surfaces of constant Gauss curvature in R2,1. 4.4 Orthogonal frame and Lax pair. 4.5 Surface of constant mean curvature. 4.5.1 Parallel surface in Euclidean space. 4.5.2 Construction of surfaces. 4.5.3 The case in Minkowski space. 5. Darboux Transformation and Harmonic Map.- 5.1 Definition of harmonic map and basic equations. 5.2 Harmonic maps from R2 or R1,1 to S2, H2 or S1,1. 5.3 Harmonic maps from R1,1 to U(N). 5.3.1 Riemannian metric on U(N). 5.3.2 Harmonic maps from R1,1 to U(N). 5.3.3 Single soliton solutions. 5.3.4 Multi-soliton solutions. 5.4 Harmonic maps from R2 to U(N). 5.4.1 Harmonic maps from R2 to U(N) and their Darboux transformations. 5.4.2 Soliton solutions. 5.4.3 Uniton. 5.4.4 Darboux transformation and singular Darboux transformation for unitons. 6. Generalized Self-Dual Yang-Mills and Yang-Mills-Higgs Equations.- 6.1 Generalized self-dual Yang-Mills flow. 6.1.1 Generalized self-dual Yang-Mills flow. 6.1.2 Darboux transformation. 6.1.3 Example. 6.1.4 Relation with AKNS system. 6.2 Yang-Mills-Higgs
Erscheint lt. Verlag | 9.7.2006 |
---|---|
Reihe/Serie | Mathematical Physics Studies | Mathematical Physics Studies |
Zusatzinfo | X, 308 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik | |
Schlagworte | Darboux transformations • Differential Equations • Differential Geometry • Integrable Systems • Inverse Scattering Theory • Minkowski space • scattering theory • two-dimensional manifolds |
ISBN-10 | 1-4020-3088-6 / 1402030886 |
ISBN-13 | 978-1-4020-3088-8 / 9781402030888 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich