Topics in Theoretical and Computational Nanoscience - Jeffrey Michael McMahon

Topics in Theoretical and Computational Nanoscience (eBook)

From Controlling Light at the Nanoscale to Calculating Quantum Effects with Classical Electrodynamics
eBook Download: PDF
2011 | 2011
XV, 199 Seiten
Springer New York (Verlag)
978-1-4419-8249-0 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.

This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically:

· At the single nanoparticle level, how well do experimental and classical electrodynamics agree?

· What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?

· Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this?

· Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?

· Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?


Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: * At the single nanoparticle level, how well do experimental and classical electrodynamics agree?* What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?* Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this? * Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?* Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?

INTRODUCTION.- BASIC ELECTROMAGNETIC THEORY.- THEORETICAL AND COMPUTATIONAL METHODS.- CORRELATED SINGLE-NANOPARTICLE CALCULATIONS AND MEASUREMENTS.- OPTIMAL SERS NANOSTRUCTURES.- NANOSTRUCTURED METAL FILMS.- OPTICAL CORRALS.- CONCLUSIONS AND OUTLOOK.- DRUDE PLUS TWO LORENTZ POLE (D2L) DIELECTRIC MODEL PARAMETERS.- DERIVATION OF THE FINITE-ELEMENT FUNCTIONAL.- DERIVATION OF THE HYDRODYNAMIC DRUDE MODEL.- DERIVATION OF NONLOCAL FINITE-DIFFERENCE EQUATIONS.- 

Erscheint lt. Verlag 24.6.2011
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XV, 199 p. 94 illus., 80 illus. in color.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik
Schlagworte Classical electrodynamics • Computational Nanoscience • Nanoscale science • Quantum effects • Theoretical Nanoscience
ISBN-10 1-4419-8249-3 / 1441982493
ISBN-13 978-1-4419-8249-0 / 9781441982490
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99