Microdosimetric Response of Physical and Biological Systems to Low- and High-LET Radiations -

Microdosimetric Response of Physical and Biological Systems to Low- and High-LET Radiations (eBook)

Theory and Applications to Dosimetry

Yigal Horowitz (Herausgeber)

eBook Download: PDF
2006 | 1. Auflage
500 Seiten
Elsevier Science (Verlag)
978-0-08-046293-6 (ISBN)
Systemvoraussetzungen
190,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
One of the aims of this book was to focus the attention of specialists to the diversity of the effects of the ionising radiation on biological and physical systems. Special emphasis has been placed on the exquisite complexities/differences introduced by high ionisation density versus low ionisation density irradiation in both biological and physical systems (Scholz - Chapter 1, Horowitz - Chapter 2, Olko - Chapter 3). As well we wanted to point out the need for novel experimental and theoretical approaches required to advance the important fields of micro and nanodosimetry. Important first steps have already been taken, for example, the accelerated application of semiconductor detectors in their various forms to microdosimetry and as well to practical, important applications in the radiation dosimetry of oncological procedures (Rosenfeld - Chapter 6). The vast number of applications of TLD to radiation dosimetry are not neglected, a special chapter is devoted to the application of TLDs to medical dosimetry applications (Mobit and Kron - Chapter 7) as well as a tutorial approach in an additional chapter to the cavity theories required to extrapolate dose from the detector medium to the tissue medium (Mobit and Sandison - Chapter 5). One of the major features of this book is the intensive, in depth, coverage of the theory and modelling of TL both from the solid state physics point of view (Chen - Chapter 4) and the microdosimetic point of view (Horowitz - Chapter 2 and Olko - Chapter 3). The many puzzling, quaint, quizzical features of TL science can now be understood in the framework of these advanced theoretical models, explained in straightforward, understandable terms.

? Quantifies/unifies the effects of ionising radiation in both the biological and physical systems
? Authoritative treatment of applications of semiconductor detectors and thermoluminescence dosemeters in medica l radiation dosimetry
? Basic and advanced aspects of microdosimetry applied to both biological and physical systems
? In-depth review of the effects of the density of ionising radiation in tsl and osl
? Concise and elegant treatment of cavity theory in medical oncological dosimetry
? Comprehensive review of this important interdisciplinary field including hundreds of ilustrations and references
One of the aims of this book was to focus the attention of specialists to the diversity of the effects of the ionising radiation on biological and physical systems. Special emphasis has been placed on the exquisite complexities/differences introduced by high ionisation density versus low ionisation density irradiation in both biological and physical systems (Scholz - Chapter 1, Horowitz - Chapter 2, Olko - Chapter 3). As well we wanted to point out the need for novel experimental and theoretical approaches required to advance the important fields of micro and nanodosimetry. Important first steps have already been taken, for example, the accelerated application of semiconductor detectors in their various forms to microdosimetry and as well to practical, important applications in the radiation dosimetry of oncological procedures (Rosenfeld - Chapter 6). The vast number of applications of TLD to radiation dosimetry are not neglected; a special chapter is devoted to the application of TLDs to medical dosimetry applications (Mobit and Kron - Chapter 7) as well as a tutorial approach in an additional chapter to the cavity theories required to extrapolate dose from the detector medium to the tissue medium (Mobit and Sandison - Chapter 5). One of the major features of this book is the intensive, in depth, coverage of the theory and modelling of TL both from the solid state physics point of view (Chen - Chapter 4) and the microdosimetic point of view (Horowitz - Chapter 2 and Olko - Chapter 3). The many puzzling, quaint, quizzical features of TL science can now be understood in the framework of these advanced theoretical models, explained in straightforward, understandable terms.* Quantifies/unifies the effects of ionising radiation in both the biological and physical systems* Authoritative treatment of applications of semiconductor detectors and thermoluminescence dosemeters in medica l radiation dosimetry* Basic and advanced aspects of microdosimetry applied to both biological and physical systems* In-depth review of the effects of the density of ionising radiation in tsl and osl * Concise and elegant treatment of cavity theory in medical oncological dosimetry* Comprehensive review of this important interdisciplinary field including hundreds of ilustrations and references

Cover 1
Preface 6
List of Contributors 8
Contents 10
Dose Response of Biological Systems to Low- and High-LET Radiation 12
Introduction 14
General aspects of radiation damage to cells and tissues 14
Response of biological systems to low-LET radiation 26
Physical characteristics of ion beams 36
Response of biological systems to high-LET radiation 41
Modeling the dose response of biological systems 57
Summary 78
Acknowledgements 79
References 79
A Unified and Comprehensive Theory of the TL Dose Response of Thermoluminescent Systems Applied to LiF:Mg,Ti 86
Introduction 88
The LiF:Mg,Ti system 96
The unified interaction model (UNIM) 120
Heavy charged particle TL fluence response 163
HCP thermoluminescent efficiency 191
Acknowledgements 208
References 209
Microdosimetric Interpretation of Photon Energy Response in TL Systems 214
Introduction 215
Physical and microdosimetric description of charged particle tracks 215
Dosimetric characteristics of the response of thermoluminescent detectors 228
The microdosimetric one-hit detector model of thermoluminescence and its relationship to underlying TL processes 233
Photon energy response of TL detectors with supralinear dose response for gamma-rays 244
Calculation of response of TL detectors to low-energy X-rays 252
References 260
Dose Dependence of Thermoluminescence (TL) and Optically Stimulated Luminescence withUniform Excitation 264
Introduction 265
Thermoluminescence dose dependence 266
Optically stimulated luminescence (OSL) and related phenomena 302
Dose-rate effect 316
Sensitization effects 319
Fading effects 329
Optical absorption 332
References 335
Cavity Theory 342
Introduction 343
Fundamentals of cavity theory 345
Cavity theory equation for photon beams 347
Bragg-Gray small cavity theory equation for photon beams 349
Spencer-Attix small cavity theory equation 351
Small cavity theory and perturbation factors 355
Large cavity theory equation 359
Intermediate cavity theory equation 363
Cavity theory and charged particle beams 366
Small cavity theory equation and solid state cavities in electron beams 368
Methods of determining mass collision stopping power ratios 374
Evaluation of the mass energy absorption coefficient ratio 375
References 376
Semiconductor Radiation Detectors in Modern Radiation Therapy 378
Introduction 379
Integral semiconductor electronic dosimetry for radiation therapy 380
Semiconductor electronic dosimetry in high-LET radiation 397
Spectroscopic dosimetry 401
Topics in hadron therapy 406
Amorphous silicon imaging plate for dosimetry in megavoltage X-ray 410
Silicon radiation detectors in nanodosimetry and proton therapy tomography 413
Acknowledgements 417
References 417
Applications of Thermoluminescent Dosimeters in Medicine 422
Introduction 424
Brief review of features of TLD materials relevant for medical dosimetry 425
Theoretical considerations 427
Clinical TLD systems based on LiF:Mg,Ti 429
TLD and radiation protection in medicine 438
Clinical dosimetry in radiotherapy 441
TLD in diagnostic radiology 454
Dosimetric intercomparisons 461
Conclusions and outlook 468
References 470
Author Index 478
Subject Index 492

Erscheint lt. Verlag 7.6.2006
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik
ISBN-10 0-08-046293-6 / 0080462936
ISBN-13 978-0-08-046293-6 / 9780080462936
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 6,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Sam Treiman

eBook Download (2024)
Princeton University Press (Verlag)
23,99