Flow Induced Vibrations -

Flow Induced Vibrations (eBook)

Classifications and Lessons from Practical Experiences
eBook Download: EPUB
2008 | 1. Auflage
310 Seiten
Elsevier Science (Verlag)
978-0-08-055913-1 (ISBN)
Systemvoraussetzungen
146,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In many plants, vibration and noise problems occur due to fluid flow which can greatly disrupt smooth plant operations. These flow-related phenomena are called Flow-Induced Vibration.
This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design.
The world-leading author team doesn't assume prior knowledge of mathematical methods and provide the reader with information on the basics of modeling.
The book includes several practical examples and thorough explanations of the structure, the evaluation method and the mechanisms to aid understanding of flow induced vibration.

* Helps ensure smooth plant operations
* Explains the structure, evaluation method and mechanisms
* Shows how to avoid vibrations in future plant design
In many plants, vibration and noise problems occur due to fluid flow, which can greatly disrupt smooth plant operations. These flow-related phenomena are called Flow-Induced Vibration.This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design. The world-leading author team doesn't assume prior knowledge of mathematical methods and provide the reader with information on the basics of modeling. The book includes several practical examples and thorough explanations of the structure, the evaluation method and the mechanisms to aid understanding of flow induced vibration. - Helps ensure smooth plant operations- Explains the structure, evaluation method and mechanisms- Shows how to avoid vibrations in future plant design

Front Cover 1
Flow-Induced Vibrations: Classifications and Lessons from Practical Experiences 4
Copyright Page 5
Contents 6
Preface 10
Foreword 12
List of Figures 14
List of Tables 22
List of Contributors 24
Nomenclature 26
Chapter 1 Introduction 28
1.1 General overview 28
1.1.1 History of FIV research 28
1.1.2 Origin of this book 30
1.2 Modeling approaches 31
1.2.1 The importance of modeling 31
1.2.2 Classification of FIV and modeling 33
1.2.3 Modeling procedure 34
1.2.4 Analytical approach 38
1.2.5 Experimental approach 40
1.3 Fundamental mechanisms of FIV 42
1.3.1 Self-induced oscillation mechanisms 43
1.3.2 Forced vibration and added mass and damping 49
Chapter 2 Vibration Induced by Cross-Flow 56
2.1 Single circular cylinder 56
2.1.1 Structures under evaluation 56
2.1.2 Vibration mechanisms and historical review 56
2.1.3 Evaluation methods 63
2.1.4 Examples of component failures due to vortex-induced vibration 69
2.2 Two circular cylinders in cross-flow 71
2.2.1 Outline of structures of interest 71
2.2.2 Historical background 71
2.2.3 Evaluation methodology 77
2.2.4 Examples of practical problems 80
2.3 Multiple circular cylinders 81
2.3.1 Outline of targeted structures 81
2.3.2 Vibration evaluation history 81
2.3.3 Estimation method 84
2.3.4 Examples of component failures 93
2.4 Bodies of rectangular and other cross-section shapes 93
2.4.1 General description of cross-section shapes 94
2.4.2 FIV of rectangular-cross-section structures and historical review 95
2.4.3 Evaluation methods 98
2.4.4 Example of structural failures and suggestions for countermeasures 107
2.5 Acoustic resonance in tube bundles 108
2.5.1 Relevant industrial products and brief description of the phenomenon 108
2.5.2 Historical background 110
2.5.3 Resonance prediction method at the design stage 116
2.5.4 Examples of acoustic resonance problems and hints for anti-resonance design 122
2.6 Prevention of FIV 124
Chapter 3 Vibration Induced by External Axial Flow 134
3.1 Single cylinder/multiple cylinders 134
3.1.1 Summary of objectives 134
3.1.2 Random vibration due to flow turbulence 134
3.1.3 Flutter and divergence 144
3.1.4 Examples of reported component-vibration problems and hints for countermeasures 146
3.2 Vibration of elastic plates and shells 147
3.2.1 Bending–torsion flutter 147
3.2.2 Panel flutter 150
3.2.3 Shell flutter 151
3.2.4 Turbulence-induced vibration 153
3.2.5 Hints for countermeasures 154
3.3 Vibration induced by leakage flow 155
3.3.1 General description of the problem 155
3.3.2 Evaluation method for single-degree-of-freedom translational system 156
3.3.3 Analysis method for single-degree-of-freedom translational system with leakage-flow passage of arbitrary shape 159
3.3.4 Mechanism of self-excited vibration 161
3.3.5 Self-excited vibrations in other cases 164
3.3.6 Hints for countermeasures 167
3.3.7 Examples of leakage-flow-induced vibration 169
Chapter 4 Vibrations Induced by Internal Fluid Flow 172
4.1 Vibration of straight and curved pipes conveying fluid 172
4.1.1 Vibration of pipes conveying fluid 172
4.1.2 Vibration of pipes excited by oscillating and two-phase fluid flow 179
4.1.3 Piping vibration caused by gas–liquid two-phase flow 182
4.2 Vibration related to bellows 187
4.2.1 Vibration of bellows 187
4.2.2 Hints for countermeasures and examples of flow-induced vibrations 196
4.3 Collapsible tubes 198
4.3.1 Summary 198
4.3.2 Self-excited vibration of collapsible tubes 198
4.3.3 Key to prevention 200
Chapter 5 Vibration Induced by Pressure Waves in Piping 204
5.1 Pressure pulsation in piping caused by compressors 204
5.1.1 Summary 204
5.1.2 Explanation of the phenomenon, and the history of research/evaluation 205
5.1.3 Calculation and evaluation methods 206
5.1.4 Hints for countermeasures 214
5.1.5 Case studies 217
5.2 Pressure pulsations in piping caused by pumps and hydraulic turbines 221
5.2.1 Outline 221
5.2.2 Explanation of phenomena 222
5.2.3 Vibration problems and suggested solutions 233
5.3 Pressure surge or water hammer in piping system 236
5.3.1 Water hammer 236
5.3.2 Synopsis of investigation 236
5.3.3 Solution methods 237
5.3.4 Countermeasures 240
5.3.5 Examples of component failures 240
5.4 Valve-related vibration 244
5.4.1 Valve vibration 244
5.4.2 Coupled vibrations between valve and fluid in the piping 246
5.4.3 Problem cases 253
5.4.4 Hints for countermeasures against valve vibration 256
5.5 Self-excited acoustic noise due to flow separation 258
5.5.1 Summary 258
5.5.2 Outline of excitation mechanisms 259
5.5.3 Case studies and hints for countermeasures 265
Chapter 6 Acoustic Vibration and Noise Caused by Heat 274
6.1 Acoustic vibration and noise caused by combustion 274
6.1.1 Introduction 274
6.1.2 Combustion driven oscillations 275
6.1.3 Combustion roar 286
6.2 Oscillations due to steam condensation 289
6.2.1 Introduction 289
6.2.2 Characteristics and prevention 290
6.2.3 Examples of practical problems 290
6.3 Flow induced vibrations related to boiling 293
6.3.1 Introduction/background 293
6.3.2 Vibration mechanisms 293
6.3.3 Analytical approach 293
6.3.4 Vibration/oscillation problems and solutions 298
Index 306
A 306
B 306
C 306
D 307
E 307
F 307
G 307
H 307
I 307
K 308
L 308
M 308
N 308
O 308
P 308
Q 309
R 309
S 309
T 310
U 311
V 311
W 311
Y 311

List of Figures

1.1 Design support system for FIV. 3

1.2 How will this half cylinder respond to wind flow? 5

1.3 Route to solution. 5

1.4 Mechanism of oscillation. 6

1.5 Classification of FIV and the corresponding sections. 7

1.6 Examples of models and mechanisms. 8

1.7 Vibration problems in design of feed water heater. 8

1.8 Vibration of tube array caused by cross-flow. 9

1.9 Decision based on importance. 10

1.10 Flowchart of simplified treatment. 10

1.11 Separate and distinct modeling of structure and flow. 11

1.12 Example of flow analysis and vibration model. 12

1.13 Dimensionless vortex shedding frequency dependence on Reynolds number. 15

1.14 Instability mechanism of elastic force coupled system. 18

1.15 Feedback forces. 20

2.1 Vortex-induced synchronization. 32

2.2 Tip-vortex shedding. 33

2.3 Cylinder motion and vortex shedding in oscillating flow. 33

2.4 Evaluation for vibration of a circular cylinder in cross-flow. 37

2.5 Range of avoidance and suppression of synchronization. 38

2.6 Suppression of in-line synchronization. 38

2.7 Lock-in in two-phase flow. 41

2.8 Suppression of synchronization by spiral strake. 42

2.9 In-line vibration of marine pile at Immingham. 43

2.10 Rain-induced vibration in Japan. 43

2.11 Example of coupling of a pipe and a thermo well. 44

2.12 Possible configurations of cylinder pairs in cross-flow: (a) two cylinders in tandem, (b) staggered arrangement of two cylinders, (c) two cylinders in parallel, (d) two staggered cylinders with different diameters, (e) two cylinders in criss-crossed configuration, and (f) intersecting cylinders. 45

2.13 Cylinder interaction regimes based on in-flow and transverse spacings. 48

2.14 Region within which control can be achieved for different diameter ratios D/d. 48

2.15 Pressure coefficient Cp variation and dependence on Z/D. 49

2.16 Experiments on upstream cylinder dynamics in the case where the downstream cylinder is fixed. 51

2.17 Cylinder configuration and coordinates. 53

2.18 Tube array patterns: (a) tube row, (b) tube column, (c) square tube array, and (d) triangular tube array. 55

2.19 Strouhal numbers for tube arrays related to pitch/diameter ratio: (a) in-line array, and (b) staggered array. 58

2.20 Example of stability boundary for fluidelastic instability. 60

2.21 Example of measured random force acting on array of circular tubes. 61

2.22 Example of measured damping ratio for tubes in two-phase flow. 64

2.23 Example of proposed random force liquid–gas two-phase flow. 65

2.24 Vibration modes for various types of structures: (a) parallel vibration, (b) rotational vibration, (c) in plane vibration, and (d) out of plane vibration. 68

2.25 Strouhal numbers for rectangular-cross-section bodies for various aspect ratios, attack angles, and rounded corners. 72

2.26 Effect of attack angle on Strouhal number for large aspect ratio (e/d = 10). 73

2.27 Effect of aspect ratio on possible vortex-induced vibration modes with zero attack angle: (a) ranges of possible FIV for lightly damped rectangular prisms in low-turbulence cross-flow (α = 0), cross-hatched and dotted regions represent prisms with transverse and streamwise degree-of-freedom, respectively, and (b) effects of aspect ratio on the mode of vortex formation. 74

2.28 Effects of attack angle on possible vortex-induced vibration modes for large aspect ratio (e/d = 10): (a) effects of attack angle on possible transverse vibration of rectangular cross-section body in cross-flow (lightly damped, low-turbulence flow, zero attack angle), and (b) effects of attack angle on the mode of vortex formation. 74

2.29 Galloping vibration amplitude of a square-cross-section body in the transverse degree-of-freedom. 79

2.30 Structures of guide vane and elbow splitter. 81

2.31 Overview of acoustic resonance in tube bundle. 82

2.32 Classification of acoustic resonance by mode shape: (a) transverse mode, and (b) longitudinal mode. 83

2.33 Resonance map for tube bundles, based on pitch-to-diameter ratio: (a) in-line, and (b) staggered array. 85

2.34 Examples of baffle placement for countermeasures against transverse acoustic modes: (a) irregular pitch, and (b) regular pitch. 85

2.35 Resonance suppression effect of cavity baffle: (a) baffle structure, and (b) sound pressure level. 86

2.36 View showing vortex–acoustic interaction: (a) stable, and (b) resonance. 86

2.37 Feed back mechanism between flow and acoustic field. 87

2.38 Experimental setup for stability evaluation by forced water-flow fluctuation. 87

2.39 Resonance occurrence in boiler scale model apparatus. 88

2.40 Mode shapes in boiler scale model apparatus: (a) transverse mode − 805 Hz, and (b) longitudinal mode − 990 Hz. 89

2.41 Typical experimental results of longitudinal mode suppression: (a) without bell-mouth, and (b) with bell-mouth. 90

2.42 Finned tubes: (a) serrated fin, and (b) solid fin. 91

2.43 Experimental validation of estimated Strouhal number using equivalent diameter and Fitz-Hugh Strouhal number. 91

2.44 Prediction of resonance based on Eisinger’s method: (a) parameter definition for staggered array, (b) setting of critical region, and (c) example of application. 94

2.45 Flow chart of Eisinger’s resonance suppression design. 94

2.46 Example of countermeasure by cavity baffle: (a) side view of boiler, (b) standing wave data, and (c) countermeasure (top view). 96

2.47 Example of countermeasure in shell and tube type heat exchanger: (a) structure of air cooler, and (b) relation between resonance frequency and flow. 96

2.48 Example of countermeasure with acoustic absorbers for coal fired boiler. 97

2.49 Region of occurrence of vortex shedding and maximum response of square cylinder as functions of Scruton number. (Solid line: boundary of occurrence; Broken line: maximum response.) 100

3.1 Schematic of: (a) BWR fuel bundle and (b) steam generator. 108

3.2 Circular cylinder subject to turbulent pressure fluctuations. 109

3.3 Turbulent wall pressure spectra. 110

3.4 Magnitude of cross-spectral density of turbulent wall pressure (longitudinal). 110

3.5 Magnitude of cross-spectral density of turbulent wall pressure (lateral). 111

3.6 Dependence of convection velocity on dimensionless frequency. 111

3.7 Mid-span rms displacement of fixed-fixed cylinders. 113

3.8 Parameters used for random vibration correlation: (a) parameter λ, and (b) parameter b. 116

3.9 Parameters for spatial correlation in air–water flow condition: (a) parameter ξ, and (b) parameter Vc. 116

3.10 Relationship between measured and predicted amplitudes of vibration according to Païdoussis’ empirical formula. 117

3.11 A two-dimensional airfoil. 121

3.12 Coupling between the bending and torsional motion. 121

3.13 Spring-supported rigid wing section in two-dimensional flow. 121

3.14 Dimensionless flutter speed versus frequency ratio. 122

3.15 Panel flutter. 123

3.16 Simply-supported plate of infinite width subjected to fluid flow over one side. 123

3.17 Dimensionless critical flow velocity versus mass ratio. 124

3.18 Jet engine after-burner. 125

3.19 Coupled sloshing and cylindrical weir shell vibration. 125

3.20 Sound spectrum for 90 degree elbow duct. 126

3.21 Examples of leakage-flow-induced vibration events: (a) PWR core barrel, and (b) feed-water sparger. 128

3.22 One-dimensional leakage passage under study and coordinate system: (a) tapered leakage-flow passage, and (b) arbitrary-shaped leakage-flow...

Erscheint lt. Verlag 17.6.2008
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Strömungsmechanik
Technik Architektur
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-055913-1 / 0080559131
ISBN-13 978-0-08-055913-1 / 9780080559131
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Heinz Schade; Ewald Kunz; Frank Kameier …

eBook Download (2022)
De Gruyter (Verlag)
74,95
A Practical Approach

von Chaoqun LIU; Yao Tao; Jiyuan Tu; Guan Heng Yeoh

eBook Download (2023)
Elsevier Science (Verlag)
70,99

von Jesse Capecelatro; Ira M. Cohen; David R Dowling …

eBook Download (2024)
Elsevier Science (Verlag)
113,00