Fluoroplastics, Volume 2: Melt Processible Fluoroplastics -  Sina Ebnesajjad

Fluoroplastics, Volume 2: Melt Processible Fluoroplastics (eBook)

The Definitive User's Guide
eBook Download: PDF | EPUB
2002 | 1. Auflage
687 Seiten
Elsevier Science (Verlag)
978-0-8155-1728-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
305,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This is the second of a two volume series of books about fluoroplastics. Volume 1 covers the non-melt processible homopolymers, requiring non-traditional processing techniques. Volume 2 is devoted to the melt-processible fluoropolymers, their polymerization and fabrication techniques including injection molding, wire, tube, and film extrusion, rotational molding, blow molding, compression molding, and transfer molding. Both a source of data and a reference, the properties, characteristics, applications, safety, disposal, and recycling of melt-processible fluoropolymers are comprehensively detailed for immediate use by today's practicing engineering and scientists in the plastics industry. Students will benefit from the book's arrangement and extensive references.
This is the second of a two volume series of books about fluoroplastics. Volume 1 covers the non-melt processible homopolymers, requiring non-traditional processing techniques. Volume 2 is devoted to the melt-processible fluoropolymers, their polymerization and fabrication techniques including injection molding, wire, tube, and film extrusion, rotational molding, blow molding, compression molding, and transfer molding. Both a source of data and a reference, the properties, characteristics, applications, safety, disposal, and recycling of melt-processible fluoropolymers are comprehensively detailed for immediate use by today's practicing engineering and scientists in the plastics industry. Students will benefit from the book's arrangement and extensive references.

1 Fundamentals

1.1 Introduction


The era of fluoropolymers began with a small mishap, which did not go unnoticed by the ingenious and observant Dr. Roy Plunkett of DuPont Company.[1] In 1938, he had been at DuPont for two years, concentrating mostly on the development of fluorinated refrigerants. He was experimenting with tetrafluoroethylene (TFE) for synthesis of a useful refrigerant (CClF2–CHF2).[2] The effort was spurred by the desire to create safe, nonflammable, nontoxic, colorless, and odorless refrigerants. On the morning of April 6, 1938, when Plunkett checked the pressure on a full cylinder of TFE, he found none. However, the cylinder had not lost weight. Careful removal of the valve and shaking the cylinder upside down yielded a few grams of a waxy looking white powder—the first polymer of tetrafluoroethylene.[2]

Plunkett analyzed the white powder, which was conclusively proven to be polytetrafluoroethylene (PTFE). The slippery PTFE could not be dissolved in any solvent, acid, or base and upon melting formed a stiff clear gel without flow.[3] Later, research led to the discovery of processing techniques similar to those used with metal powders. At the time, the Manhattan Project was seeking new corrosion-resistant material for gaskets, packings, and liners for UF6 handling. PTFE provided the answer and was used in production. The US government maintained a veil of secrecy over the PTFE project until well after the end of World War II.

Figure 1.1 Reenactment of the discovery of polytetrafluoroethylene (Teflon®) in 1938 by DuPont scientist Dr. Roy Plunkett (right).

(Courtesy DuPont.)

Large-scale monomer synthesis and controlled polymerization were technical impediments to be resolved. Intensive studies solved these problems and small-scale production of Teflon® (trademark, 1944) began in 1947. In 1950, DuPont scaled up the commercial production of Teflon® in the USA with the construction of a new plant in Parkersburg, West Virginia. In 1947, Imperial Chemical Industries built the first PTFE plant outside the US, in Western Europe. Since then, many more plants have been built around the globe. Over the last six decades, many forms of PTFE and copolymers of other monomers and TFE have been developed and commercialized.

The words of Plunkett himself best summarize the discovery of PTFE. He recounted the story of Teflon® in a speech to the American Chemical Society at its April 1986 meeting in New York. "The discovery of polytetrafluoroethylene (PTFE) has been variously described as (i) an example of serendipity, (ii) a lucky accident and (iii) a flash of genius. Perhaps all three were involved. There is complete agreement, however, on the results of that discovery. It revolutionized the plastics industry and led to vigorous applications not otherwise possible."[2]

Figure 1.2 Photograph of two pages from the research notebook of Dr. Roy Plunkett recording the discovery of polytetrafluoroethylene on April 6, 1938.

(Courtesy DuPont.)

1.2 What are Fluoropolymers?


Traditionally, a fluoropolymer or fluoroplastic is defined as a polymer consisting of carbon (C) and fluorine (F). Sometimes these are referred to as perfluoropolymers to distinguish them from partially fluorinated polymers, fluoroelastomers and other polymers that contain fluorine in their chemical structure. For example fluorosilicone and fluoroacrylate polymers are not referred to as fluoropolymers. An example of a linear fluoropolymer is tetrafluoroethylene polymer (PTFE):

A simplistic analogy would be to the chemical composition of polyethylene [(–CH2–CH2-)n] where all the hydrogen atoms have been replaced by fluorine atoms. Of course, in practice PTFE and polyethylene are prepared in totally different ways. There are branched fluoropolymers such as fluorinated ethylene propylene polymer (FEP):

Oxygen (O) and chlorine (Cl) are present in the chemical structure of some commercial fluoropolymers. Examples include perfluoroalkoxy polymer and polychlorotrifluoroethylene:

Rf is usually a perfluorinated group consisting of carbon and fluorine. Introduction of nonlinearity, oxygen and side chains, or chlorine invokes a variety of polymer properties which will be dealt with later in this book.

There is a second class of fluoropolymers called "partially fluorinated" in contrast to "perfluorinated polymers." These molecules include hydrogen (H) in addition to fluorine and carbon. Examples include polyvinyl fluoride, polyvinylidene fluoride, ethylene tetrafluoroethylene copolymer, and ethylenechlorotrifluo-roethylene copolymer.

Partially fluorinated fluoropolymers are significantly different from the perfluoropolymers with respect to properties and processing characteristics. For example, perfluoropolymers are more thermally stable but physically less hard than partially fluorinated polymers. Both classes of fluoropolymers are discussed later in this book.

1.3 Fundamental Properties of Fluoropolymers


The basic properties of fluoropolymers arise from the atomic structure of fluorine and carbon and their covalent bonding in specific chemical structures. These properties are weakened as the chemical structure becomes less "perfluorinated," as in polyvinylidene fluoride. Because PTFE has a linear structure, it is a good subject for discussion of extreme properties. The backbone is formed of carbon-carbon bonds and carbon-fluorine bonds. Both are extremely strong bonds (C–C = 607 kJ/mole and C–F = 552 kJ/mole.)[4][5] The basic properties of PTFE stem from these two very strong chemical bonds. The PTFE molecule resembles a carbon rod completely blanketed with a sheath of fluorine atoms.[6]

The size of the fluorine atom allows the formation of a uniform and continuous sheath around the carbon–Carbon bonds and protects them from attack, thus imparting chemical resistance and stability to the molecule. The fluorine sheath is also responsible for the low surface energy (18 dynes/cm)[7] and low coefficient of friction (0.05-0.08, static)[6] of PTFE. Another attribute of the uniform fluorine sheath is the electrical inertness (or non-polarity) of the PTFE molecule. Electrical fields impart only slight polarization in this molecule, so volume and surface resistivity are high. Table 1.1 summarizes the fundamental properties of PTFE, which represents the ultimate polymer among all fluoroplastics.

Table 1.1. Fundamental Properties of PTFE

• High melting point, 342°C (648°F)

• High thermal stability

• Useful mechanical properties at extremely low and high temperatures

• Insolubility

• Chemical inertness

• Low coefficient of friction

• Low dielectric constant/dissipation factor

• Low water ab/adsorptivity

• Excellent weatherability

• Flame resistance

• Purity

The basic properties of PTFE provide beneficial attributes with high commercial value (Table 1.2).

Table 1.2. Useful Attributes of Perfluoropolymers

• Stability

– high continuous use temperature
– excellent weatherability
– excellent chemical resistance
– excellent fire properties

• Low Surface Energy

– good release properties
– biological inertness
– low friction

• Cryogenic Properties

– retains flexibility

• Electrical Properties

– low dielectric constant
– low dissipation factor

1.4 Developmental History of Fluoropolymers


The development of fluoropolymers began with the invention of PTFE in 1938, continued to 1992 when a soluble perfuoropolymer (Teflon® AF) was introduced, and to 2002 when fluoroplastics polymerized in supercritical carbon dioxide were introduced. Table 1.3 summarizes the timeline for the development of fluoropolymers that have brought about major changes in properties and/or fabrication processes.

Table 1.3. Commercialization Timeline of Major Fluoropolymers vs Key Processing/Application Trade-Offs

The discovery of PTFE was a major leap forward in material science. Yet, the...

Erscheint lt. Verlag 30.10.2002
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Maschinenbau
Wirtschaft
ISBN-10 0-8155-1728-9 / 0815517289
ISBN-13 978-0-8155-1728-3 / 9780815517283
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 12,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 36,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99