Lens Design Fundamentals -  R. Barry Johnson,  Rudolf Kingslake

Lens Design Fundamentals (eBook)

eBook Download: PDF | EPUB
2009 | 2. Auflage
569 Seiten
Elsevier Science (Verlag)
978-0-08-092156-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
80,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
  • Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978
  • Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer
  • Many new lens design problems and examples - ranging from simple lenses to complex zoom lenses and mirror systems - give insight for both the newcomer and specialist in the field

Rudolf Kingslake is regarded as the American father of lens design, his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies.

This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more.

Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application, it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner.

Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980).

R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference.




  • Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978

  • Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer

  • Many new lens design problems and examples - ranging from simple lenses to complex zoom lenses and mirror systems - give insight for both the newcomer and specialist in the field

Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer Many new lens design problems and examples - ranging from simple lenses to complex zoom lenses and mirror systems - give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer Many new lens design problems and examples - ranging from simple lenses to complex zoom lenses and mirror systems - give insight for both the newcomer and specialist in the field

Front Cover 1
Lens Design Fundamentals 2
Copyright Page 3
Dedication 4
Contents 6
Preface to the Second Edition 10
Preface to the First Edition 14
A Special Tribute to Rudolf Kingslake 16
Chapter 1: The Work of the Lens Designer 21
1.1. Relations Between Designer and Factory 22
1.1.1 Spherical versus Aspheric Surfaces 22
1.1.2 Establishment of Thicknesses 23
1.1.3 Antireflection Coatings 25
1.1.4 Cementing 25
1.1.5 Establishing Tolerances 26
1.1.6 Design Tradeoffs 28
1.2. The Design Procedure 28
1.2.1 Sources of a Likely Starting System 29
1.2.2 Lens Evaluation 30
1.2.3 Lens Appraisal 30
1.2.4 System Changes 31
1.3. Optical Materials 31
1.3.1 Optical Glass 32
1.3.2 Infrared Materials 33
1.3.3 Ultraviolet Materials 33
1.3.4 Optical Plastics 33
1.4. Interpolation of Refractive Indices 36
1.4.1 Interpolation of Dispersion Values 38
1.4.2 Temperature Coefficient of Refractive Index 39
1.5. Lens Types to be Considered 40
Chapter 2: Meridional Ray Tracing 45
2.1. Introduction 45
2.1.1 Object and Image 45
2.1.2 The Law of Refraction 46
2.1.3 The Meridional Plane 47
2.1.4 Types of Rays 47
2.1.5 Notation and Sign Conventions 49
2.2. Graphical Ray Tracing 50
2.3. Trigonometrical Ray Tracing at a Spherical Surface 52
2.3.1 Program for a Computer 56
2.4. Some Useful Relations 57
2.4.1 The Spherometer Formula 57
2.4.2 Some Useful Formulas 58
2.4.3 The Intersection Height of Two Spheres 59
2.4.4 The Volume of a Lens 60
2.4.5 Solution for Last Radius to Give a Stated uprime 60
2.5. Cemented Doublet Objective 61
2.6. Ray Tracing at a Tilted Surface 62
2.6.1 The Ray Tracing Equations 62
2.6.2 Example of Ray Tracing through a Tilted Surface 64
2.7. Ray Tracing at an Aspheric Surface 65
Chapter 3: Paraxial Rays and First-Order Optics 71
3.1. Tracing a Paraxial Ray 72
3.1.1 The Standard Paraxial Ray Trace 72
3.1.2 The (y – nu) Method 73
3.1.3 Inverse Procedure 74
3.1.4 Angle Solve and Height Solve Methods 75
3.1.5 The (l, lprime) Method 75
3.1.6 Paraxial Ray with All Angles 76
3.1.7 A Paraxial Ray at an Aspheric Surface 77
3.1.8 Graphical Tracing of Paraxial Raysat Finite Heights and Angles 77
3.1.9 Matrix Approach to Paraxial Rays 79
3.2. Magnification and the Lagrange Theorem 83
3.2.1 Transverse Magnification 83
3.2.2 Longitudinal Magnification 85
3.3. The Gaussian Optics of a Lens System 87
3.3.1 The Relation between the Principal Planes 88
3.3.2 The Relation between the Two Focal Lengths 89
3.3.3 Lens Power 90
3.3.4 Calculation of Focal Length 90
3.3.5 Conjugate Distance Relationships 91
3.3.6 Nodal Points 92
3.3.7 Optical Center of Lens 95
3.3.8 The Scheimpflug Condition 97
3.4. First-Order Layout of an Optical System 98
3.4.1 A Single Thick Lens 98
3.4.2 A Single Thin Lens 99
3.4.3 A Monocentric Lens 99
3.4.4 Image Shift Caused by a Parallel Plate 100
3.4.5 Lens Bending 100
3.4.6 A Series of Separated Thin Elements 102
3.4.7 Insertion of Thicknesses 104
3.4.8 Two-Lens Systems 104
3.5. Thin-Lens Layout of Zoom Systems 107
3.5.1 Mechanically Compensated Zoom Lenses 107
3.5.2 A Three-Lens Zoom 108
3.5.3 A Three-Lens Optically Compensated Zoom System 110
3.5.4 A Four-Lens Optically Compensated Zoom System 113
3.5.5 An Optically Compensated Zoom Enlarger or Printer 116
Endnotes 119
Chapter 4: Aberration Theory 121
4.1. Introduction 121
4.2. Symmetrical Optical Systems 121
4.3. Aberration Determination Using Ray Trace Data 134
4.3.1 Defocus 134
4.3.2 Spherical Aberration 135
4.3.3 Tangential and Sagittal Astigmatism 137
4.3.4 Tangential and Sagittal Coma 140
4.3.5 Distortion 143
4.3.6 Selection of Rays for Aberration Computation 144
4.3.7 Zonal Aberrations 145
4.3.8 Tangential and Sagittal Zonal Astigmatism 145
4.3.9 Tangential and Sagittal Zonal Coma 146
4.3.10 Higher-Order Contributions 146
4.4. Calculation of Seidel Aberration Coefficients 148
Endnotes 154
Chapter 5: Chromatic Aberration 157
5.1. Introduction 157
5.2. Spherochromatism of a Cemented Doublet 159
5.2.1 Spherical Aberration (LAprime) 160
5.2.2 Zonal Aberration (LZAprime) 160
5.2.3 Chromatic Aberration (Lprimech) 160
5.2.4 Secondary Spectrum 162
5.2.5 Spherochromatism 163
5.3. Contribution of a Single Surface to the Primary Chromatic Aberration 163
5.4. Contribution of a Thin Element in a System to the Paraxial Chromatic Aberration 165
5.5. Paraxial Secondary Spectrum 169
5.6. Predesign of a Thin Three-Lens Apochromat 172
5.7. The Separated Thin-Lens Achromat (Dialyte) 176
5.7.1 Secondary Spectrum of a Dialyte 178
5.7.2 A One-Glass Achromat 179
5.8. Chromatic Aberration Tolerances 182
5.8.1 A Single Lens 182
5.8.2 An Achromat 183
5.9. Chromatic Aberration at Finite Aperture 183
5.9.1 Conrady’s D – d Method of Achromatization 183
5.9.2 Achromatization by Adjusting the LastRadius of the Lens 186
5.9.3 Tolerance for the D – d Sum 186
5.9.4 Relation between the D – d Sum and theOrdinary Chromatic Aberration 188
5.9.5 Paraxial D – d for a Thin Element 189
Endnotes 190
Chapter 6: Spherical Aberration 193
6.1. Surface Contribution Formulas 196
6.1.1 The Three Cases of Zero Aberration at a Surface 199
6.1.2 An Aplanatic Single Element 201
6.1.3 Effect of Object Distance on the Spherical Aberration Arising at a Surface 201
6.1.4 Effect of Lens Bending 202
6.1.5. A Single Lens Having MinimumSpherical Aberration 203
6.1.6 A Two-Lens Minimum Aberration System 204
6.1.7 A Four-Lens Monochromat Objective 206
6.1.8 An Aspheric Planoconvex Lens Freefrom Spherical Aberration 208
6.2. Zonal Spherical Aberration 214
6.3. Primary Spherical Aberration 217
6.3.1 At a Single Surface 217
6.3.2 Primary Spherical Aberration of a Thin Lens 218
6.4. The Image Displacement Caused by a Planoparallel Plate 224
6.5. Spherical Aberration Tolerances 226
6.5.1 Primary Aberration 226
6.5.2 Zonal Aberration 226
6.5.3 Conrady’s OPDprimem Formula 227
Endnotes 228
Chapter 7: Design of a Spherically Corrected Achromat 229
7.1. The Four-Ray Method 229
7.2. A Thin-Lens Predesign 231
7.2.1 Insertion of Thickness 232
7.2.2 Flint-in-Front Solutions 234
7.3. Correction of Zonal Spherical Aberration 236
7.4. Design Of an Apochromatic Objective 240
7.4.1 A Cemented Doublet 240
7.4.2 A Triplet Apochromat 240
7.4.3 Apochromatic Objective with an Air Lens 243
Endnotes 246
Chapter 8: Oblique Beams 247
8.1. Passage of an Oblique Beam through a Spherical Surface 247
8.1.1 Coma and Astigmatism 247
8.1.2 Principal Ray, Stops, and Pupils 249
8.1.3 Vignetting 251
8.2. Tracing Oblique Meridional Rays 254
8.2.1 The Meridional Ray Plot 256
8.3. Tracing a Skew Ray 258
8.3.1 Transfer Formulas 258
8.3.2 The Angles of Incidence 260
8.3.3 Refraction Equations 260
8.3.4 Transfer to the Next Surface 261
8.3.5 Opening Equations 261
8.3.6 Closing Equations 262
8.3.7 Diapoint Location 262
8.3.8 Example of a Skew-Ray Trace 262
8.4. Graphical Representation of Skew-Ray Aberrations 263
8.4.1 The Sagittal Ray Plot 263
8.4.2 A Spot Diagram 265
8.4.3 Encircled Energy Plot 269
8.4.4 Modulation Transfer Function 270
8.5. Ray Distribution from a Single Zone of a Lens 272
Endnotes 273
Chapter 9: Coma and the Sine Condition 275
9.1. The Optical Sine Theorem 275
9.2. The Abbe Sine Condition 276
9.2.1 Coma for the Three Cases of Zero Spherical Aberration 277
9.3. Offense Against the Sine Condition 278
9.3.1 Solution for Stop Position for a Given OSC 280
9.3.2 Surface Contribution to the OSC 280
9.3.3 Orders of Coma 283
9.3.4 The Coma G Sum 283
9.3.5 Spherical Aberration and OSC 283
9.4. Illustration of Comatic Error 286
Endnotes 288
Chapter 10: Design of Aplanatic Objectives 289
10.1. Broken-Contact Type 289
10.2. Parallel Air-Space Type 292
10.3. An Aplanatic Cemented Doublet 295
10.4. A Triple Cemented Aplanat 297
10.5. An Aplanat with A Buried Achromatizing Surface 300
10.6. The Matching Principle 303
Endnotes 308
Chapter 11: The Oblique Aberrations 309
11.1. Astigmatism and the Coddington Equations 309
11.1.1 The Tangential Image 309
11.1.2 The Sagittal Image 311
11.1.3 Astigmatic Calculation 312
11.1.4 Graphical Determinationof the Astigmatic Images 314
11.1.5 Astigmatism for the Three Cases of Zero Spherical Aberration 316
11.1.6 Astigmatism at a Tilted Surface 316
11.2. The Petzval Theorem 317
11.2.1 Relation Between the Petzval Sum and Astigmatism 319
11.2.2 Methods for Reducing the Petzval Sum 320
11.3. Illustration of Astigmatic Error 326
11.4. Distortion 326
11.4.1 Measuring Distortion 330
11.4.2 Distortion Contribution Formulas 331
11.4.3 Distortion When the Image Surface Is Curved 333
11.5. Lateral Color 333
11.5.1 Primary Lateral Color 333
11.5.2 Application of the (D – d) Method to an Oblique Pencil 335
11.6. The Symmetrical Principle 336
11.7. Computation of the Seidel Aberrations 338
11.7.1 Surface Contributions 338
11.7.2 Thin-Lens Contributions 339
11.7.3 Aspheric Surface Corrections 340
11.7.4 A Thin Lens in the Plane of an Image 341
Endnotes 341
Chapter 12: Lenses in Which Stop Position Is a Degree of Freedom 343
12.1. The Hprime - L Plot 343
12.1.1 Distortion 344
12.1.2 Tangential Field Curvature 344
12.1.3 Coma 345
12.1.4 Spherical Aberration 345
12.2. Simple Landscape Lenses 345
12.2.1 Simple Rear Landscape Lenses 347
12.2.2 A Simple Front Landscape Lens 349
12.3. A Periscopic Lens 351
12.4. Achromatic Landscape Lenses 354
12.4.1 The Chevalier Type 354
12.4.2 The Grubb Type 356
12.4.3 A “New Achromat” Landscape Lens 356
12.5. Achromatic Double Lenses 359
12.5.1 The Rapid Rectilinear 359
12.5.2. A Flint-in-Front Symmetrical Achromatic Doublet 362
12.5.3 Long Telescopic Relay Lenses 366
12.5.4 The Ross “Concentric” Lens 368
Endnotes 369
Chapter 13: Symmetrical Double Anastigmats with Fixed Stop 371
13.1. The Design of a Dagor Lens 371
13.2. The Design of an Air-Spaced Dialyte Lens 375
13.3. A Double-Gauss-Type Lens 383
13.4. Double-Gauss Lens with Cemented Triplets 389
13.5. Double-Gauss Lens with Air-spaced Negative Doublets 393
Endnotes 397
Chapter 14: Unsymmetrical Photographic Objectives 399
14.1. The Petzval Portrait Lens 399
14.1.1 The Petzval Design 400
14.1.2 The Dallmeyer Design 404
14.2. The Design of a Telephoto Lens 408
14.3. Lenses to Change Magnification 417
14.3.1 Barlow Lens 417
14.3.2 Bravais Lens 418
14.4. The Protar Lens 420
14.5. Design of a Tessar Lens 429
14.5.1 Choice of Glass 429
14.5.2 Available Degrees of Freedom 429
14.5.3 Chromatic Correction 431
14.5.4 Spherical Correction 432
14.5.5 Correction of Coma and Field 434
14.5.6 Final Steps 437
14.6. The Cooke Triplet Lens 439
14.6.1 The Thin-Lens Predesign of the Powers and Separations 440
14.6.2 The Thin-Lens Predesign of the Bendings 443
14.6.3 Calculation of Real Aberrations 445
14.6.4 Triplet Lens Improvements 446
Endnotes 456
Chapter 15: Mirror and Catadioptric Systems 459
15.1. Comparison of Mirrors and Lenses 459
15.2. Ray Tracing a Mirror System 460
15.3. Single-Mirror Systems 462
15.3.1 A Spherical Mirror 462
15.3.2 A Parabolic Mirror 464
15.3.3 An Elliptical Mirror 465
15.3.4 A Hyperbolic Mirror 467
15.4. Single-Mirror Catadioptric Systems 467
15.4.1 A Flat-Field Ross Corrector 468
15.4.2 An Aplanatic Parabola Corrector 470
15.4.3 The Mangin Mirror 471
15.4.4 The Bouwers–Maksutov System 473
15.4.5 The Gabor Lens 475
15.4.6 The Schmidt Camera 479
15.4.7 Variable Focal-Range Infrared Telescope 482
15.4.8 Broad-Spectrum Afocal Catadioptric Telescope 485
15.4.9 Self-Corrected Unit-Magnification Systems 489
15.5. Two-Mirror Systems 491
15.5.1 Two-Mirror Systems with Aspheric Surfaces 491
15.5.2 A Maksutov Cassegrain System 493
15.5.3 A Schwarzschild Microscope Objective 500
15.5.4 Three-Mirror System 502
15.6. Multiple-Mirror Zoom Systems 502
15.6.1 Aberrations of Off-Centered Entrance Pupil Optical Systems 503
15.6.2 All-Reflective Zoom Optical Systems 505
15.6.3 Off-Centered Entrance Pupil Reflective Optical Systems 508
15.7. Summary 517
Endnotes 517
Chapter 16: Eyepiece Design 521
16.1. Design of a Military-Type Eyepiece 522
16.1.1 The Objective Lens 522
16.1.2 Eyepiece Layout 523
16.2. Design of an Erfle Eyepiece 526
16.3. Design of a Galilean Viewfinder 530
Endnotes 532
Chapter 21: Automatic Lens Improvement Programs 533
17.1. Finding a Lens Design Solution 534
17.1.1 The Case of as Many Aberrations as There Are Degrees of Freedom 534
17.1.2 The Case of More Aberrations Than Free Variables 535
17.1.3 What Is an Aberration? 536
17.1.4 Solution of the Equations 537
17.2. Optimization Principles 538
17.3. Weights and Balancing Aberrations 542
17.4. Control of Boundary Conditions 543
17.5. Tolerances 544
17.6. Program Limitations 545
17.7. Lens Design Computing Development 545
17.8. Programs and Books Useful for Automatic Lens Design 549
17.8.1 Automatic Lens Design Programs 549
17.8.2 Lens Design Books 549
Endnotes 551
Appendix: A Selected Bibliography of Writings by Rudolf Kingslake 555
Index 557

Erscheint lt. Verlag 20.11.2009
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-092156-6 / 0080921566
ISBN-13 978-0-08-092156-3 / 9780080921563
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 12,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 12,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Von Energie und Entropie zu Wärmeübertragung und Phasenübergängen

von Rainer Müller

eBook Download (2023)
De Gruyter (Verlag)
49,95