Physicochemical and Environmental Plant Physiology (eBook)
604 Seiten
Elsevier Science (Verlag)
978-0-08-092089-4 (ISBN)
Physicochemical and Environmental Plant Physiology, Fourth Edition, is the updated version of an established and successful reference for plant scientists. The author has taken into consideration extensive reviews performed by colleagues and students who have touted this book as the ultimate reference for research and learning.
The original structure and philosophy of the book continue in this new edition, providing a genuine synthesis of modern physicochemical and physiological thinking, while entirely updating the detailed content. This version contains more than 40% new coverage; five brand new equations and four new tables, with updates to 24 equations and six tables; and 30 new figures have been added with more than three-quarters of figures and legends improved. Key concepts in plant physiology are developed with the use of chemistry, physics, and mathematics fundamentals.
The book is organized so that a student has easy access to locate any biophysical phenomenon in which he or she is interested.
* More than 40% new coverage* Incorporates student-recommended changes from the previous edition
* Five brand new equations and four new tables, with updates to 24 equations and six tables
* 30 new figures added with more than three-quarters of figures and legends improved
* Organized so that a student has easy access to locate any biophysical phenomenon in which he or she is interested
* Per-chapter key equation tables
* Problems with solutions presented in the back of the book
* Appendices with conversion factors, constants/coefficients, abbreviations and symbols
Physicochemical and Environmental Plant Physiology, Fourth Edition, is the updated version of an established and successful reference for plant scientists. The author has taken into consideration extensive reviews performed by colleagues and students who have touted this book as the ultimate reference for research and learning.The original structure and philosophy of the book continue in this new edition, providing a genuine synthesis of modern physicochemical and physiological thinking, while entirely updating the detailed content. This version contains more than 40% new coverage; five brand new equations and four new tables, with updates to 24 equations and six tables; and 30 new figures have been added with more than three-quarters of figures and legends improved. Key concepts in plant physiology are developed with the use of chemistry, physics, and mathematics fundamentals.The book is organized so that a student has easy access to locate any biophysical phenomenon in which he or she is interested. - More than 40% new coverage- Incorporates student-recommended changes from the previous edition Five brand new equations and four new tables, with updates to 24 equations and six tables 30 new figures added with more than three-quarters of figures and legends improved Organized so that a student has easy access to locate any biophysical phenomenon in which he or she is interested Per-chapter key equation tables Problems with solutions presented in the back of the book Appendices with conversion factors, constants/coefficients, abbreviations and symbols
Front Cover 1
Physicochemical and Environmental Plant Physiology 4
Copyright Page 5
Contents 6
Preface 14
Symbols and Abbreviations 16
Chapter 1. Cells and Diffusion 25
1.1. Cell Structure 25
1.1A. Generalized Plant Cell 25
1.1B. Leaf Anatomy 27
1.1C. Vascular Tissue 29
1.1D. Root Anatomy 31
1.2. Diffusion 33
1.2A. Fick’s First Law 34
1.2B. Continuity Equation and Fick’s Second Law 36
1.2C. Time–Distance Relation for Diffusion 38
1.2D. Diffusion in Air 41
1.3. Membrane Structure 43
1.3A. Membrane Models 43
1.3B. Organelle Membranes 45
1.4. Membrane Permeability 47
1.4A. Concentration Difference Across a Membrane 48
1.4B. Permeability Coeffi cient 50
1.4C. Diffusion and Cellular Concentration 51
1.5. Cell Walls 53
1.5A. Chemistry and Morphology 55
1.5B. Diffusion Across Cell Walls 56
1.5C. Stress–Strain Relations of Cell Walls 59
1.5D. Elastic Modulus, Viscoelasticity 61
1.6. Problems 62
1.7. References and Further Reading 64
Chapter 2. Water 67
2.1. Physical Properties 68
2.1A. Hydrogen Bonding—Thermal Relations 69
2.1B. Surface Tension 71
2.1C. Capillary Rise 72
2.1D. Capillary Rise in the Xylem 75
2.1E. Tensile Strength, Viscosity 76
2.1F. Electrical Properties 77
2.2. Chemical Potential 78
2.2A. Free Energy and Chemical Potential 78
2.2B. Analysis of Chemical Potential 82
2.2C. Standard State 85
2.2D. Hydrostatic Pressure 86
2.2E. Water Activity and Osmotic Pressure 87
2.2F. Van’t Hoff Relation 88
2.2G. Matric Pressure 91
2.2H. Water Potential 93
2.3. Central Vacuole and Chloroplasts 94
2.3A. Water Relations of the Central Vacuole 95
2.3B. Boyle–Van’t Hoff Relation 96
2.3C. Osmotic Responses of Chloroplasts 98
2.4. Water Potential and Plant Cells 100
2.4A. Incipient Plasmolysis 100
2.4B. Höfl er Diagram and Pressure–Volume Curve 103
2.4C. Chemical Potential and Water Potential of Water Vapor 106
2.4D. Plant–Air Interface 109
2.4E. Pressure in the Cell Wall Water 110
2.4F. Water Flux 113
2.4G. Cell Growth 115
2.4H. Kinetics of Volume Changes 117
2.5. Problems 118
2.6. References and Further Reading 120
Chapter 3. Solutes 123
3.1. Chemical Potential of Ions 124
3.1A. Electrical Potential 125
3.1B. Electroneutrality and Membrane Capacitance 126
3.1C. Activity Coeffi cients of Ions 128
3.1D. Nernst Potential 130
3.1E. Example of ENK 132
3.2. Fluxes and Diffusion Potentials 134
3.2A. Flux and Mobility 135
3.2B. Diffusion Potential in a Solution 138
3.2C. Membrane Fluxes 141
3.2D. Membrane Diffusion Potential—Goldman Equation 144
3.2E. Application of Goldman Equation 147
3.2F. Donnan Potential 149
3.3. Characteristics of Crossing Membranes 151
3.3A. Electrogenicity 152
3.3B. Boltzmann Energy Distribution and Q10, a Temperature Coeffi cient 153
3.3C. Activation Energy and Arrhenius Plots 157
3.3D. Ussing–Teorell Equation 159
3.3E. Example of Active Transport 162
3.3F. Energy for Active Transport 164
3.3G. Speculation on Active Transport 165
3.4. Mechanisms for Crossing Membranes 166
3.4A. Carriers, Porters, Channels, and Pumps 167
3.4B. Michaelis–Menten Formalism 171
3.4C. Facilitated Diffusion 173
3.5. Principles of Irreversible Thermodynamics 175
3.5A. Fluxes, Forces, and Onsager Coeffi cients 176
3.5B. Water and Solute Flow 178
3.5C. Flux Densities, LP , and s 180
3.5D. Values for Refl ection Coeffi cients 183
3.6. Solute Movement Across Membranes 185
3.6A. Infl uence of Refl ection Coeffi cients on Incipient Plasmolysis 187
3.6B. Extension of the Boyle–Van’t Hoff Relation 189
3.6C. Refl ection Coeffi cients of Chloroplasts 191
3.6D. Solute Flux Density 191
3.7. Problems 192
3.8. References and Further Reading 195
Chapter 4. Light 199
4.1. Wavelength and Energy 201
4.1A. Light Waves 201
4.1B. Energy of Light 204
4.1C. Illumination, Photon Flux Density, and Irradiance 207
4.1D. Sunlight 210
4.1E. Planck’s and Wien’s Formulae 212
4.2. Absorption of Light by Molecules 213
4.2A. Role of Electrons in Absorption Event 214
4.2B. Electron Spin and State Multiplicity 216
4.2C. Molecular Orbitals 217
4.2D. Photoisomerization 220
4.2E. Light Absorption by Chlorophyll 221
4.3. Deexcitation 223
4.3A. Fluorescence, Radiationless Transition, and Phosphorescence 224
4.3B. Competing Pathways for Deexcitation 225
4.3C. Lifetimes 228
4.3D. Quantum Yields 230
4.4. Absorption Spectra and Action Spectra 230
4.4A. Vibrational Sublevels 232
4.4B. The Franck–Condon Principle 233
4.4C. Absorption Bands, Absorption Coeffi cients, and Beer’s Law 236
4.4D. Application of Beer’s Law 238
4.4E. Conjugation 239
4.4F. Action Spectra 241
4.4G. Absorption and Action Spectra of Phytochrome 242
4.5. Problems 245
4.6. References and Further Reading 247
Chapter 5. Photochemistry of Photosynthesis 251
5.1. Chlorophyll—Chemistry and Spectra 254
5.1A. Types and Structures 254
5.1B. Absorption and Fluorescence Emission Spectra 255
5.1C. Absorption in Vivo—Polarized Light 258
5.2. Other Photosynthetic Pigments 260
5.2A. Carotenoids 260
5.2B. Phycobilins 264
5.2C. General Comments 266
5.3. Excitation Transfers Among Photosynthetic Pigments 267
5.3A. Pigments and the Photochemical Reaction 268
5.3B. Resonance Transfer of Excitation 269
5.3C. Specifi c Transfers of Excitation 270
5.3D. Excitation Trapping 272
5.4. Groupings of Photosynthetic Pigments 275
5.4A. Photon Processing 275
5.4B. Excitation Processing 275
5.4C. Photosynthetic Action Spectra and Enhancement Effects 278
5.4D. Two Photosystems Plus Light-Harvesting Antennae 278
5.5. Electron Flow 282
5.5A. Electron Flow Model 282
5.5B. Components of the Electron Transfer Pathway 284
5.5C. Types of Electron Flow 290
5.5D. Assessing Photochemistry using Fluorescence 291
5.5E. Photophosphorylation 293
5.5F. Vectorial Aspects of Electron Flow 293
5.6. Problems 295
5.7. References and Further Reading 296
Chapter 6. Bioenergetics 299
6.1. Gibbs Free Energy 300
6.1A. Chemical Reactions and Equilibrium Constants 302
6.1B. Interconversion of Chemical and Electrical Energy 305
6.1C. Redox Potentials 307
6.2. Biological Energy Currencies 308
6.2A. ATP—Structure and Reactions 309
6.2B. Gibbs Free Energy Change for ATP Formation 313
6.2C. NADP+–NADPH Redox Couple 315
6.3. Chloroplast Bioenergetics 317
6.3A. Redox Couples 317
6.3B. H+ Chemical Potential Differences Caused by Electron Flow 321
6.3C. Evidence for Chemiosmotic Hypothesis 322
6.3D. Coupling of Flows 324
6.4. Mitochondrial Bioenergetics 325
6.4A. Electron Flow Components—Redox Potentials 326
6.4B. Oxidative Phosphorylation 329
6.5. Energy Flow in the Biosphere 332
6.5A. Incident Light—Stefan–Boltzmann Law 333
6.5B. Absorbed Light and Photosynthetic Effi ciency 335
6.5C. Food Chains and Material Cycles 336
6.6. Problems 337
6.7. References and Further Reading 339
Chapter 7. Temperature and Energy Budgets 341
7.1. Energy Budget—Radiation 342
7.1A. Solar Irradiation 344
7.1B. Absorbed Infrared Irradiation 348
7.1C. Emitted Infrared Radiation 349
7.1D. Values for a, aIR, and eIR 350
7.1E. Net Radiation 352
7.1F. Examples for Radiation Terms 352
7.2. Heat Conduction and Convection 355
7.2A. Wind 356
7.2B. Air Boundary Layers 358
7.2C. Boundary Layers for Bluff Bodies 361
7.2D. Heat Conduction/Convection Equations 362
7.2E. Dimensionless Numbers 363
7.2F. Examples of Heat Conduction/Convection 367
7.3. Latent Heat—Transpiration 368
7.3A. Heat Flux Density Accompanying Transpiration 368
7.3B. Heat Flux Density for Dew or Frost Formation 369
7.3C. Examples of Frost and Dew Formation 370
7.4. Further Examples of Energy Budgets 372
7.4A. Leaf Shape and Orientation 372
7.4B. Shaded Leaves within Plant Communities 374
7.4C. Heat Storage 374
7.4D. Time Constants 376
7.5. Soil 377
7.5A. Thermal Properties 378
7.5B. Soil Energy Balance 379
7.5C. Variations in Soil Temperature 380
7.6. Problems 382
7.7. References and Further Reading 384
Chapter 8. Leaves and Fluxes 387
8.1. Resistances and Conductances—Transpiration 388
8.1A. Boundary Layer Adjacent to Leaf 390
8.1B. Stomata 393
8.1C. Stomatal Conductance and Resistance 395
8.1D. Cuticle 398
8.1E. Intercellular Air Spaces 398
8.1F. Fick’s First Law and Conductances 399
8.2. Water Vapor Fluxes Accompanying Transpiration 402
8.2A. Conductance and Resistance Network 402
8.2B. Values of Conductances 405
8.2C. Effective Lengths and Resistance 406
8.2D. Water Vapor Concentrations, Mole Fractions and Partial Pressures for Leaves 407
8.2E. Examples of Water Vapor Levels in a Leaf 409
8.2F. Water Vapor Fluxes 411
8.2G. Control of Transpiration 412
8.3. CO2 Conductances and Resistances 414
8.3A. Resistance and Conductance Network 414
8.3B. Mesophyll Area 416
8.3C. Resistance Formulation for Cell Components 419
8.3D. Partition Coeffi cient for CO2 420
8.3E. Cell Wall Resistance 421
8.3F. Plasma Membrane Resistance 422
8.3G. Cytosol Resistance 423
8.3H. Mesophyll Resistance 424
8.3I. Chloroplast Resistance 424
8.4. CO2 Fluxes Accompanying Photosynthesis 425
8.4A. Photosynthesis 425
8.4B. Respiration and Photorespiration 428
8.4C. Comprehensive CO2 Resistance Network 432
8.4D. Compensation Points 434
8.4E. Fluxes of CO2 438
8.4F. CO2 Conductances 440
8.4G. Photosynthetic Rates 442
8.4H. Environmental Productivity Index 442
8.5. Water-Use Effi ciency 444
8.5A. Values for WUE 445
8.5B. Elevational Effects on WUE 447
8.5C. Stomatal Control of WUE 448
8.5D. C3 versus C4 Plants 451
8.6. Problems 454
8.7. References and Further Reading 456
Chapter 9. Plants and Fluxes 461
9.1. Gas Fluxes above Plant Canopy 462
9.1A. Wind Speed Profi les 463
9.1B. Flux Densities 464
9.1C. Eddy Diffusion Coeffi cients 465
9.1D. Resistance of Air above Canopy 467
9.1E. Transpiration and Photosynthesis 467
9.1F. Values for Fluxes and Concentrations 468
9.1G. Condensation 470
9.2. Gas Fluxes within Plant Communities 471
9.2A. Eddy Diffusion Coeffi cient and Resistance 471
9.2B. Water Vapor 473
9.2C. Attenuation of the Photosynthetic Photon Flux 475
9.2D. Values for Foliar Absorption Coeffi cient 476
9.2E. Light Compensation Point 477
9.2F. CO2 Concentrations and Fluxes 478
9.2G. CO2 at Night 480
9.3. Water Movement in Soil 481
9.3A. Soil Water Potential 482
9.3B. Darcy’s Law 484
9.3C. Soil Hydraulic Conductivity Coeffi cient 485
9.3D. Fluxes for Cylindrical Symmetry 487
9.3E. Fluxes for Spherical Symmetry 489
9.4. Water Movement in the Xylem and the Phloem 491
9.4A. Root Tissues 491
9.4B. Xylem 492
9.4C. Poiseuille’s Law 493
9.4D. Applications of Poiseuille’s Law 494
9.4E. Phloem 498
9.4F. Phloem Contents and Speed of Movement 500
9.4G. Mechanism of Phloem Flow 501
9.4H. Values for Components of the Phloem Water Potential 502
9.5. Soil–Plant–Atmosphere Continuum 505
9.5A. Values for Water Potential Components 505
9.5B. Resistances and Areas 507
9.5C. Values for Resistances and Resistivities 509
9.5D. Root–Soil Air Gap and Hydraulic Conductances 512
9.5E. Capacitance and Time Constants 514
9.5F. Daily Changes 517
9.5G. Global Climate Change 519
9.6. Problems 522
9.7. References and Further Reading 525
Solutions To Problems 529
Appendix I. Numerical Values of Constants and Coeffi cients 567
Appendix II. Conversion Factors and Defi nitions 575
Appendix III. Mathematical Relations 579
III.A. Prefixes (for units of measure) 579
III.B. Areas and Volumes 579
III.C. Logarithms 579
III.D. Quadratic Equation 580
III.E. Trignometric Functions 580
III.F. Differential Equations 580
Appendix IV. Gibbs Free Energy and Chemical Potential 583
IV.A. Entropy and Equilibrium 583
IV.B. Gibbs Free Energy 585
IV.C. Chemical Potential 587
IV.D. Pressure Dependence of µj 587
IV.E. Concentration Dependence of µj 590
Index 593
Erscheint lt. Verlag | 13.5.2009 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie ► Botanik |
Technik | |
ISBN-10 | 0-08-092089-6 / 0080920896 |
ISBN-13 | 978-0-08-092089-4 / 9780080920894 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich