Fluid Mechanics -  Ira M. Cohen,  Pijush K. Kundu

Fluid Mechanics (eBook)

eBook Download: PDF
2007 | 4. Auflage
904 Seiten
Elsevier Science (Verlag)
978-0-08-055583-6 (ISBN)
Systemvoraussetzungen
83,46 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Fully revised and updated with the addition of a new chapter on biofluid mechanics, Fluid Mechanics, Fourth Edition is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. The leading advanced general text on fluid mechanics, Fluid Mechanics, 4e guides students from the fundamentals to the analysis and application of fluid mechanics, including compressible flow and such diverse applications as hydraulics and aerodynamics.

  • Updates to several chapters and sections, including Boundary Layers, Turbulence, Geophysical Fluid Dynamics, Thermodynamics and Compressibility.
  • Fully revised and updated chapter on Computational Fluid Dynamics.
  • New chapter on Biofluid Mechanics by Professor Portonovo Ayyaswamy, the Asa Whitney Professor of Dynamical Engineering at the University of Pennsylvania.
  • New Visual Resources appendix provides a list of fluid mechanics films available for viewing online.
  • Additional worked-out examples and end-of-chapter problems.
  • Updated online Solutions Manual for adopting instructors.
    Fluid Mechanics, Fourth Edition, is a basic yet comprehensive introductory text on the fundamentals of fluid mechanics and applications in engineering and science. It guides students from the fundamentals to the analysis and application of fluid mechanics, including compressible flow and such diverse applications as hydraulics and aerodynamics. This new edition contains updates to several chapters and sections, including Boundary Layers, Turbulence, Geophysical Fluid Dynamics, Thermodynamics and Compressibility. It includes a new chapter on Biofluid Mechanics by Professor Portonovo Ayyaswamy, the Asa Whitney Professor of Dynamical Engineering at the University of Pennsylvania. It provides additional worked-out examples and end-of-chapter problems. The book is recommended for senior undergraduate/graduate students in mechanical, civil, aerospace, chemical and biomedical engineering; physics, chemistry, meteorology, geophysics, and applied mathematics. - Updates to several chapters and sections, including Boundary Layers, Turbulence, Geophysical Fluid Dynamics, Thermodynamics and Compressibility. - Fully revised and updated chapter on Computational Fluid Dynamics. - New chapter on Biofluid Mechanics by Professor Portonovo Ayyaswamy, the Asa Whitney Professor of Dynamical Engineering at the University of Pennsylvania. - New Visual Resources appendix provides a list of fluid mechanics films available for viewing online. - Additional worked-out examples and end-of-chapter problems.
  • Front Cover 1
    Fluid Mechanics 4
    Copyright Page 5
    Dedication 6
    About the Author 7
    Table of Contents 8
    Preface 18
    Preface to Third Edition 20
    Preface to Second Edition 22
    Preface to First Edition 24
    Author’s Notes 28
    Chapter 1. Introduction 30
    1. Fluid Mechanics 30
    2. Units of Measurement 31
    3. Solids, Liquids, and Gases 32
    4. Continuum Hypothesis 33
    5. Transport Phenomena 34
    6. Surface Tension 37
    7. Fluid Statics 38
    8. Classical Thermodynamics 41
    9. Perfect Gas 45
    10. Static Equilibrium of a Compressible Medium 47
    Exercises 51
    Literature Cited 53
    Supplemental Reading 53
    Chapter 2. Cartesian Tensors 54
    1. Scalars and Vectors 54
    2. Rotation of Axes: Formal Definition of a Vector 55
    3. Multiplication of Matrices 58
    4. Second-Order Tensor 59
    5. Contraction and Multiplication 61
    6. Force on a Surface 62
    7. Kronecker Delta and Alternating Tensor 65
    8. Dot Product 66
    9. Cross Product 67
    10. Operator .: Gradient, Divergence, and Curl 67
    11. Symmetric and Antisymmetric Tensors 69
    12. Eigenvalues and Eigenvectors of a Symmetric Tensor 70
    13. Gauss’ Theorem 73
    14. Stokes’ Theorem 76
    15. Comma Notation 78
    16. Boldface vs Indicial Notation 78
    Exercises 79
    Literature Cited 80
    Supplemental Reading 80
    Chapter 3. Kinematics 82
    1. Introduction 82
    2. Lagrangian and Eulerian Specifications 83
    3. Eulerian and Lagrangian Descriptions: The Particle Derivative 84
    4. Streamline, Path Line, and Streak Line 86
    5. Reference Frame and Streamline Pattern 88
    6. Linear Strain Rate 89
    7. Shear Strain Rate 90
    8. Vorticity and Circulation 91
    9. Relative Motion near a Point: Principal Axes 93
    10. Kinematic Considerations of Parallel Shear Flows 96
    11. Kinematic Considerations of Vortex Flows 97
    12. One-, Two-, and Three-Dimensional Flows 100
    13. The Streamfunction 102
    14. Polar Coordinates 104
    Exercises 106
    Supplemental Reading 108
    Chapter 4. Conservation Laws 110
    1. Introduction 111
    2. Time Derivatives of Volume Integrals 111
    3. Conservation of Mass 113
    4. Streamfunctions: Revisited and Generalized 116
    5. Origin of Forces in Fluid 117
    6. Stress at a Point 119
    7. Conservation of Momentum 121
    8. Momentum Principle for a Fixed Volume 122
    9. Angular Momentum Principle for a Fixed Volume 127
    10. Constitutive Equation for Newtonian Fluid 129
    11. Navier–Stokes Equation 133
    12. Rotating Frame 134
    13. Mechanical Energy Equation 140
    14. First Law of Thermodynamics: Thermal Energy Equation 144
    15. Second Law of Thermodynamics: Entropy Production 145
    16. Bernoulli Equation 147
    17. Applications of Bernoulli’s Equation 151
    18. Boussinesq Approximation 153
    19. Boundary Conditions 158
    Exercises 163
    Literature Cited 165
    Supplemental Reading 166
    Chapter 5. Vorticity Dynamics 168
    1. Introduction 168
    2. Vortex Lines and Vortex Tubes 169
    3. Role of Viscosity in Rotational and Irrotational Vortices 170
    4. Kelvin’s Circulation Theorem 173
    5. Vorticity Equation in a Nonrotating Frame 178
    6. Velocity Induced by a Vortex Filament: Law of Biot and Savart 180
    7. Vorticity Equation in a Rotating Frame 181
    8. Interaction of Vortices 186
    9. Vortex Sheet 190
    Exercises 190
    Literature Cited 192
    Supplemental Reading 192
    Chapter 6. Irrotational Flow 194
    1. Relevance of Irrotational Flow Theory 194
    2. Velocity Potential: Laplace Equation 196
    3. Application of Complex Variables 198
    4. Flow at a Wall Angle 200
    5. Sources and Sinks 202
    6. Irrotational Vortex 203
    7. Doublet 203
    8. Flow past a Half-Body 204
    9. Flow past a Circular Cylinder without Circulation 207
    10. Flow past a Circular Cylinder with Circulation 209
    11. Forces on a Two-Dimensional Body 213
    12. Source near a Wall: Method of Images 218
    13. Conformal Mapping 219
    14. Flow around an Elliptic Cylinder with Circulation 221
    15. Uniqueness of Irrotational Flows 223
    16. Numerical Solution of Plane Irrotational Flow 224
    17. Axisymmetric Irrotational Flow 230
    18. Streamfunction and Velocity Potential for Axisymmetric Flow 232
    19. Simple Examples of Axisymmetric Flows 234
    20. Flow around a Streamlined Body of Revolution 235
    21. Flow around an Arbitrary Body of Revolution 237
    22. Concluding Remarks 238
    Exercises 238
    Literature Cited 241
    Supplemental Reading 241
    Chapter 7. Gravity Waves 242
    1. Introduction 243
    2. The Wave Equation 243
    3. Wave Parameters 245
    4. Surface Gravity Waves 248
    5. Some Features of Surface Gravity Waves 252
    6. Approximations for Deep and Shallow Water 258
    7. Influence of Surface Tension 263
    8. Standing Waves 266
    9. Group Velocity and Energy Flux 267
    10. Group Velocity and Wave Dispersion 271
    11. Nonlinear Steepening in a Nondispersive Medium 275
    12. Hydraulic Jump 277
    13. Finite Amplitude Waves of Unchanging Form in a Dispersive Medium 279
    14. Stokes’ Drift 282
    15. Waves at a Density Interface between Infinitely Deep Fluids 284
    16. Waves in a Finite Layer Overlying an Infinitely Deep Fluid 288
    17. Shallow Layer Overlying an Infinitely Deep Fluid 291
    18. Equations of Motion for a Continuously Stratified Fluid 292
    19. Internal Waves in a Continuously Stratified Fluid 296
    20. Dispersion of Internal Waves in a Stratified Fluid 299
    21. Energy Considerations of Internal Waves in a Stratified Fluid 301
    Exercises 305
    Literature Cited 306
    Chapter 8. Dynamic Similarity 308
    1. Introduction 308
    2. Nondimensional Parameters Determined from Differential Equations 309
    3. Dimensional Matrix 313
    4. Buckingham’s Pi Theorem 314
    5. Nondimensional Parameters and Dynamic Similarity 316
    6. Comments on Model Testing 319
    7. Significance of Common Nondimensional Parameters 321
    Exercises 323
    Literature Cited 323
    Supplemental Reading 323
    Chapter 9. Laminar Flow 324
    1. Introduction 324
    2. Analogy between Heat and Vorticity Diffusion 326
    3. Pressure Change Due to Dynamic Effects 326
    4. Steady Flow between Parallel Plates 327
    5. Steady Flow in a Pipe 331
    6. Steady Flow between Concentric Cylinders 332
    7. Impulsively Started Plate: Similarity Solutions 335
    8. Diffusion of a Vortex Sheet 342
    9. Decay of a Line Vortex 344
    10. Flow Due to an Oscillating Plate 346
    11. High and Low Reynolds Number Flows 349
    12. Creeping Flow around a Sphere 351
    13. Nonuniformity of Stokes’ Solution and Oseen’s Improvement 356
    14. Hele-Shaw Flow 361
    15. Final Remarks 363
    Exercises 364
    Literature Cited 366
    Supplemental Reading 366
    Chapter 10. Boundary Layers and Related Topics 368
    1. Introduction 369
    2. Boundary Layer Approximation 369
    3. Different Measures of Boundary Layer Thickness 375
    4. Boundary Layer on a Flat Plate with a Sink at the Leading Edge: Closed Form Solution 377
    5. Boundary Layer on a Flat Plate: Blasius Solution 381
    6. von Karman Momentum Integral 391
    7. Effect of Pressure Gradient 393
    8. Separation 395
    9. Description of Flow past a Circular Cylinder 397
    10. Description of Flow past a Sphere 404
    11. Dynamics of Sports Balls 405
    12. Two-Dimensional Jets 410
    13. Secondary Flows 417
    14. Perturbation Techniques 418
    15. An Example of a Regular Perturbation Problem 423
    16. An Example of a Singular Perturbation Problem 425
    17. Decay of a Laminar Shear Layer 430
    Exercises 436
    Literature Cited 438
    Supplemental Reading 439
    Chapter 11. Computational Fluid Dynamics 440
    1. Introduction 440
    2. Finite Difference Method 442
    3. Finite Element Method 447
    4. Incompressible Viscous Fluid Flow 455
    5. Three Examples 469
    6. Concluding Remarks 490
    Exercises 492
    Literature Cited 493
    Chapter 12. Instability 496
    1. Introduction 496
    2. Method of Normal Modes 498
    3. Thermal Instability: The Bénard Problem 499
    4. Double-Diffusive Instability 511
    5. Centrifugal Instability: Taylor Problem 515
    6. Kelvin–Helmholtz Instability 522
    7. Instability of Continuously Stratified Parallel Flows 529
    8. Squire’s Theorem and Orr–Sommerfeld Equation 536
    9. Inviscid Stability of Parallel Flows 539
    10. Some Results of Parallel Viscous Flows 543
    11. Experimental Verification of Boundary Layer Instability 549
    12. Comments on Nonlinear Effects 551
    13. Transition 552
    14. Deterministic Chaos 554
    Exercises 562
    Literature Cited 564
    Chapter 13. Turbulence 566
    1. Introduction 566
    2. Historical Notes 568
    3. Averages 570
    4. Correlations and Spectra 572
    5. Averaged Equations of Motion 576
    6. Kinetic Energy Budget of Mean Flow 583
    7. Kinetic Energy Budget of Turbulent Flow 585
    8. Turbulence Production and Cascade 588
    9. Spectrum of Turbulence in Inertial Subrange 591
    10. Wall-Free Shear Flow 593
    11. Wall-Bounded Shear Flow 599
    12. Eddy Viscosity and Mixing Length 609
    13. Coherent Structures in a Wall Layer 613
    14. Turbulence in a Stratified Medium 615
    15. Taylor’s Theory of Turbulent Dispersion 620
    16. Concluding Remarks 627
    Exercises 627
    Literature Cited 629
    Supplemental Reading 630
    Chapter 14. Geophysical Fluid Dynamics 632
    1. Introduction 632
    2. Vertical Variation of Density in Atmosphere and Ocean 634
    3. Equations of Motion 636
    4. Approximate Equations for a Thin Layer on a Rotating Sphere 639
    5. Geostrophic Flow 642
    6. Ekman Layer at a Free Surface 646
    7. Ekman Layer on a Rigid Surface 651
    8. Shallow-Water Equations 654
    9. Normal Modes in a Continuously Stratified Layer 657
    10. High- and Low-Frequency Regimes in Shallow-Water Equations 663
    11. Gravity Waves with Rotation 665
    12. Kelvin Wave 668
    13. Potential Vorticity Conservation in Shallow-Water Theory 673
    14. Internal Waves 676
    15. Rossby Wave 686
    16. Barotropic Instability 692
    17. Baroclinic Instability 694
    18. Geostrophic Turbulence 702
    Exercises 705
    Literature Cited 706
    Chapter 15. Aerodynamics 708
    1. Introduction 708
    2. The Aircraft and Its Controls 709
    3. Airfoil Geometry 712
    4. Forces on an Airfoil 713
    5. Kutta Condition 713
    6. Generation of Circulation 716
    7. Conformal Transformation for Generating Airfoil Shape 717
    8. Lift of Zhukhovsky Airfoil 721
    9. Wing of Finite Span 724
    10. Lifting Line Theory of Prandtl and Lanchester 726
    11. Results for Elliptic Circulation Distribution 730
    12. Lift and Drag Characteristics of Airfoils 733
    13. Propulsive Mechanisms of Fish and Birds 735
    14. Sailing against the Wind 737
    Exercises 738
    Literature Cited 740
    Supplemental Reading 740
    Chapter 16. Compressible Flow 742
    1. Introduction 742
    2. Speed of Sound 746
    3. Basic Equations for One-Dimensional Flow 750
    4. Stagnation and Sonic Properties 753
    5. Area–Velocity Relations in One-Dimensional Isentropic Flow 758
    6. Normal Shock Wave 762
    7. Operation of Nozzles at Different Back Pressures 770
    8. Effects of Friction and Heating in Constant-Area Ducts 776
    9. Mach Cone 779
    10. Oblique Shock Wave 781
    11. Expansion and Compression in Supersonic Flow 785
    12. Thin Airfoil Theory in Supersonic Flow 787
    Exercises 790
    Literature Cited 792
    Supplemental Reading 792
    Chapter 17. Introduction to Biofluid Mechanics 794
    1. Introduction 794
    2. The Circulatory System in the Human Body 795
    3. Modelling of Flow in Blood Vessels 811
    4. Introduction to the Fluid Mechanics of Plants 860
    Exercises 866
    Acknowledgment 867
    Literature Cited 867
    Appendix A. Some Properties of Common Fluids 870
    A1. Useful Conversion Factors 870
    A2. Properties of Pure Water at Atmospheric Pressure 871
    A3. Properties of Dry Air at Atmospheric Pressure 871
    A4. Properties of Standard Atmosphere 872
    Appendix B. Curvilinear Coordinates 874
    B1. Cylindrical Polar Coordinates 874
    B2. Plane Polar Coordinates 876
    B3. Spherical Polar Coordinates 876
    Appendix C. Founders of Modern Fluid Dynamics 880
    Ludwig Prandtl (1875 1953) 880
    Geoffrey Ingram Taylor (1886 1975) 881
    Supplemental Reading 882
    Appendix D. Visual Resources 884
    Index 886

    Erscheint lt. Verlag 5.12.2007
    Sprache englisch
    Themenwelt Naturwissenschaften Physik / Astronomie Strömungsmechanik
    Technik Bauwesen
    Technik Maschinenbau
    ISBN-10 0-08-055583-7 / 0080555837
    ISBN-13 978-0-08-055583-6 / 9780080555836
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Adobe DRM)

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich

    von Heinz Schade; Ewald Kunz; Frank Kameier …

    eBook Download (2022)
    De Gruyter (Verlag)
    74,95
    A Practical Approach

    von Chaoqun LIU; Yao Tao; Jiyuan Tu; Guan Heng Yeoh

    eBook Download (2023)
    Elsevier Science (Verlag)
    70,99

    von Jesse Capecelatro; Ira M. Cohen; David R Dowling …

    eBook Download (2024)
    Elsevier Science (Verlag)
    113,00