Nonlinear Optics in Semiconductors I -

Nonlinear Optics in Semiconductors I (eBook)

Nonlinear Optics in Semiconductor Physics I

Elsa Garmire, Alan Kost (Herausgeber)

eBook Download: EPUB | PDF
1998 | 1. Auflage
426 Seiten
Elsevier Science (Verlag)
978-0-08-086456-3 (ISBN)
190,00 € inkl. MwSt
Systemvoraussetzungen
189,81 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "e;Willardson and Beer"e; Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.

Front Cover 1
Nonlinear Optics in Semiconductors I 4
Copyright Page 5
Contents 6
Preface 12
List of Contributors 16
Chapter 1. Resonant Optical Nonlinearities in Semiconductors 18
I. Introduction 19
II. Survey of Nonlinear Optical Mechanisms 20
III. Modeling And Measuring Optical Nonlinearity 25
IV. Resonant Optical Nonlinearity in GaAs Quantum Wells 33
V. Summary of Band-Filling Nonlinearities 46
VI. Figure of Merit 51
VII. Optical Nonlinearity From Free Carrier Absorption and Refraction 55
VIII. Optothermal Optical Nonlinearities 61
IX. All-Optical Switching 62
X. Summary and Conclusions 66
List of Abbreviations and Acronyms 66
References 67
Chapter 2. Optical Nonlinearities in Semiconductors Enhanced by Carrier Transport 72
List of Acronyms 73
I. Introduction 73
II. Experimental Results on Optical Nonlinearities Influenced by Carrier Transport 80
III. Field Dependence of The Optical Properties of Semiconductors 103
IV. Experimental Configurations 140
V. Characteristics of Experimental Devices That Utilize Self-Modulation 163
References 177
Chapter 3. Ultrafast Transient Nonlinear Optical Processes in Semiconductors 192
I. Introduction 192
II. Near-Band-Gap Excitations 195
III. Time Scales and Dynamic Trends 205
IV. A Purely Coherent Process Involving Only Virtual Electron-Hole Pairs: The Excitonic Optical Stark Effect 215
V. Fundamentals of Two-particle Correlation Effects Involving Real Electron-Hole Pairs 223
VI. Applications: Spectroscopy and Dynamics of Electronic States in Heterostructures 235
VII. Fundamentals of Four-Particle Correlation Effects Involving Real Electron-Hole Pairs 243
VIII. Dynamics in The Quantum Kinetics Regime 256
IX. Conclusion 265
List of Abbreviations and Acronyms 267
References 267
Chapter 4. Optical Nonlinearities in The Transparency Region of Bulk Semiconductors 274
I. Introduction 275
II. Background 276
III. Theory of Bound-Electronic Nonlinearities: Two-Band Model 288
IV. Bound-Electronic Optical Nonlinearities in Active Semiconductors 301
V. Free-Carrier Nonlinearities 304
VI. Experimental Methods 310
VII. Applications 324
VIII. Conclusion 328
List of Abbreviations and Acronyms 330
References 330
Chapter 5. Photorefractivity in Semiconductors 336
I. Introduction 337
II. Space-Charge Grating Formation 338
III. Beam Coupling 345
II. Four-Wave Mixing 354
V. Enhanced Wave-Mixing Techniques 363
VI. Bulk Semiconductors 381
VII. Multiple Quantum Wells 388
VIII. Selected Applications 402
List of Abbreviations and Acronyms 411
References 412
Index 420
Contents of Volumes in This Series 426

Chapter 2

Optical Nonlinearities in Semiconductors Enhanced by Carrier Transport


Elsa Garmire    Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire

LIST OF ACRONYMS

CBE chemical beam epitaxy

CQW coupled quantum well

CR contrast ratio

cw continuous wave

FK Franz- Keldysh

FP Fabry-Perot

IMFP impedance-matched Fabry-Perot

KK Kramers-Kronig

MBE molecular beam epitaxy

MOCVD metallo-organic chemical vapor deposition

QCSE quantum confined Stark effec

QW quantum well

SEED self electro-optic effect device

SLM spatial light modulator

WSL Wannier Stark localization

YAG yttrium aluminum garnet

I Introduction


This chapter is based on the photoexcitation of free carriers, in which some fraction of the light incident on a semiconductor is absorbed, creating electron–hole pairs. This photogeneration of carriers causes a change in the optical properties of the semiconductor so that subsequent light sees a change in absorption and/or refractive index as a result of the existence of the photocarriers. A brief review of such semiconductor nonlinearities was published in Physics Today (Garmire, 1994).

This chapter includes only resonant processes and excludes virtual excitations, in which no physical electronic transitions take place and which may be nonresonant. The requirement of real physical excitation of photocarriers means that the nonlinearities must have the speed of electronic excitation times, typically picoseconds. The nonlinearities will last as long as the optically excited carriers remain. Depending on the device structure, this can be anything from 10 ps to milliseconds. The ability to control the response time by device design is one advantage of semiconductor nonlinearities that use carrier transport, the focus of this chapter. The applications that motivate the study of these nonlinearities are those that require a high degree of parallelism, with low operating intensities and moderate speeds. That is, this study will exclude the femtosecond and picosecond virtual processes that require very high optical field strengths, and consequently face issues of multiphoton absorption. The high degree of parallelism means that two-dimensional geometries are required, ruling out waveguides. Therefore, the geometry under consideration in this chapter is thin semiconductor films, grown epitaxially and illuminated at normal incidence, such as shown in Fig 1. By convention, the direction of crystal growth is labeled z, and the thickness of quantum wells is designated Lz.

Fig. 1 Thin film epitaxial geometry for optical nonlinearities involving semiconductor quantum wells at normal incidence; two-dimensional applications include spatial light modulators. The substrate (shown as dashed lines) can be removed if necessary. Incident light is normal to the growth planes, in a direction labeled z (by convention).

Direct-band semiconductors are usually chosen, because their band edge is sharper than indirect-band semiconductors and the optical absorption between direct bands is strongly influenced by electric field.

1 LOCAL NONLINEARITIES ENHANCED BY CARRIER TRANSPORT


In semiconductors, optical nonlinearities can be local or nonlocal (Garmire et al., 1989). In local nonlinearities, optical excitation changes the absorption and refractive index of the semiconductor locally; that is, photogenerated carriers stay where they are and fill available states, reducing the absorption, as discussed in the preceding chapter. The amount of state filling depends on the photocarrier density. Thus, if photocarriers can live longer, the optical intensity required to maintain the same level of optical nonlinearity can be lower. That is, the material has a higher sensitivity. Carrier recombination rates can be reduced if photogenerated holes can be separated from electrons, which reduces the probability of recombination.

The localized filling of available states in bulk semiconductors (Lee et al., 1986) and in quantum wells (Chemla et al., 1984) causes a change in the absorption coefficient α that can be described heuristically by a simple saturation as a function of photocarrier density N (Kawase et al., 1994, Park et al., 1988):

N=αu+αs1+N/Ns

  (1)

consisting of an unsaturable part αu and a saturable part αs, where Ns is the saturation value of the photocarrier density. Writing δα(N) ≡ α(0) − α(N) = αs(N/Ns)/(1 + N/Ns), experimental data can be most easily fit to the saturation form if 1/δα is plotted vs 1/N. Then the intercept gives 1/αs, and the saturation carrier density can be determined from the slope.

The refractive index has a similiar form:

N=nu+ns1+N/Ns

  (2)

The photocarrier density N is related to the incident intensity I by the absorption and the recombination time of the carriers, τ:

=αIτ/hv

  (3)

where hv is the photon energy. The time τ is determined by the joint probability of electrons and holes being available for recombination. Therefore, if carrier transport can be used to increase τ, then the required intensity I decreases, since the scaling is proportional to . If τ can be controlled through carrier transport, then the nonlinearity can be optimized to achieve as much sensitivity as possible for a given required response time.

When experimental data are given in terms of the intensity dependence of the absorption change, the saturated absorption change, αs, can be most easily found by plotting log(δα) vs. log(I) and extrapolating to large log(I). The saturation intensity occurs when the absorption change reaches half its saturation value, and can be found from the value at which log(δα) = log(αs/2) = log(αs) − 0.3.

The use of carrier transport to control recombination time by separating photogenerated electrons and holes in semiconductors can be understood with reference to Fig. 2(a). An undoped quantum well (QW) sits in an n region, surrounded by the tilted bands from two back-to-back p-i-n junctions, as shown. The tilt of the conduction and valence bands (C.B. and V.B., respectively) is created by the equalization of the Fermi levels. The undoped QW has a smaller band gap than the rest of the material, and its resonant absorption creates photocarriers in the QW. The electrons remain trapped in the well, but the holes tunnel out and float up to the p-doped region. The resulting local concentration of electrons in the QW causes the available states to fill, as discussed in Chap. 1, whereas removal of the holes means that recombination times become very long. This results in very sensitive state-filling nonlinearities, although at the sacrifice of much slower response times, which can be lengthened from nanoseconds to milliseconds, decreasing saturation intensities from kilowatts to milliwatts.

Fig. 2 Semiconductor junction structures for understanding carrier transport nonlinearities: (a) QW in the n region, utilizing enhanced lifetime due to removal of holes; (b) QW in the i region, utilizing field-moderated changes in absorption and refractive index.

Since state filling depends on the electron density, and each photon creates a single electron that lasts until it recombines, there is a direct tradeoff between sensitivity (defined by the required intensity to fill available states) and reponse time. In fact, for times less than the recombination time, the fluence F at the excitonic resonance wavelength required to cause a given change in absorption or refractive index would be the same as in undoped material, since Iτ in Eq. 3 becomes F.

2 NONLOCAL NONLINEARITIES


Carrier transport in the presence of static fields causes electrons and holes to move out of their local region, with the resultant charge separation screening the static field. This nonlocal self-modulation of the electric field results in a large nonlocal change in refractive index and/or absorption near the...

Erscheint lt. Verlag 22.10.1998
Mitarbeit Herausgeber (Serie): Eicke R. Weber, R. K. Willardson
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Optik
Naturwissenschaften Physik / Astronomie Quantenphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-086456-2 / 0080864562
ISBN-13 978-0-08-086456-3 / 9780080864563
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 11,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Michael Schulz; Beatrix M. Schulz; Reinhold Walser …

eBook Download (2022)
Wiley-VCH (Verlag)
48,99
Theoretische Physik II

von Michael Schulz; Beatrix M. Schulz; Reinhold Walser …

eBook Download (2022)
Wiley-VCH (Verlag)
48,99