Model Theory (eBook)
649 Seiten
Elsevier Science (Verlag)
978-0-08-088007-5 (ISBN)
This new edition has been updated to take account of these changes, while preserving its usefulness as a first textbook in model theory. Whole new sections have been added, as well as new exercises and references. A number of updates, improvements and corrections have been made to the main text.
Since the second edition of this book (1977), Model Theory has changed radically, and is now concerned with fields such as classification (or stability) theory, nonstandard analysis, model-theoretic algebra, recursive model theory, abstract model theory, and model theories for a host of nonfirst order logics. Model theoretic methods have also had a major impact on set theory, recursion theory, and proof theory.This new edition has been updated to take account of these changes, while preserving its usefulness as a first textbook in model theory. Whole new sections have been added, as well as new exercises and references. A number of updates, improvements and corrections have been made to the main text.
Front Cover 1
Model Theory 4
Copyright Page 5
Contents 16
Chapter 1. Introduction 18
1.1. What is model theory? 18
1.2. Model theory for sentential logic 21
1.3. Languages, models and satisfaction 35
1.4. Theories and examples of theories 53
1.5. Elimination of quantifiers 66
Chapter 2. Models constructed from constants 78
2.1. Completeness and compactness 78
2.2. Refinements of the method. Omitting types and interpolation theorems 94
2.3. Countable models of complete theories 113
2.4. Recursively saturated models 126
2.5. Lindström’s characterization of first order logic 144
Chapter 3. Further model-theoretic constructions 153
3.1. Elementary extensions and elementary chains 153
3.2. Applications of elementary chains 164
3.3. Skolem functions and indiscernibles 180
3.4. Some examples 195
3.5. Model completeness 203
Chapter 4. Ultraproducts 228
4.1. The fundamental theorem 228
4.2. Measurable cardinals 244
4.3. Regular ultrapowers 265
4.4. Nonstandard universes 279
Chapter 5. Saturated and special models 309
5.1. Saturated and special models 309
5.2. Preservation theorems 323
5.3. Applications of special models to the theory of definability 340
5.4. Applications to field theory 359
5.5. Application to Boolean algebras 389
Chapter 6. More about ultraproducts and generalizations 401
6.1. Ultraproducts which are saturated 401
6.2. Direct products, reduced products, and Horn sentences 422
6.3. Direct products, reduced products, and Horn sentences (continued) 437
6.4. Limit ultrapowers and complete extensions 464
6.5. Iterated ultrapowers 480
Chapter 7. Selected topics 499
7.1. Categoricity in power 499
7.2. An extension of Ramsey’s theorem and applications some two-cardinal theorems
7.3. Models of large cardinality 551
7.4. Large cardinals and the constructible universe 575
Appendix A. Set theory 596
Appendix B. Open problems in classical model theory 614
Historical notes 620
References 640
Additional references 651
Index of definitions 658
Index of symbols 666
Erscheint lt. Verlag | 12.6.1990 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Naturwissenschaften | |
ISBN-10 | 0-08-088007-X / 008088007X |
ISBN-13 | 978-0-08-088007-5 / 9780080880075 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich