Progress in Low Temperature Physics -

Progress in Low Temperature Physics (eBook)

Bill Halperin (Herausgeber)

eBook Download: PDF
2005 | 1. Auflage
502 Seiten
Elsevier textbooks (Verlag)
978-0-08-046036-9 (ISBN)
Systemvoraussetzungen
305,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A number of interrelated areas of low temperature physics are brought together in this volume. The four topics are presented as separate chapters. First is the study of the Kibble-Zurek mechanism for defect formation following quench cooling of superfluid 3He and its relation to quantum field theory. Properties of heavy fermion materials are described next with special attention to the competition between magnetism and superconductivity. Some of the newest correlated electron systems are discussed and the arguments for possible unconventional nature of the superconducting order parameter are presented for these systems, including the novel coexistence of ferromagnetism and superconductivity. Highly polarized degenerate Fermi liquids are of substantial interest in many areas of physics. The most complete description of observations of thermodynamic and transport phenomena are reviewed here for the case of polarized liquid 3He obtained by rapid melting from a polarized solid and subsequent rapid refrigeration. Properties of the melting curve of 3He, and the related technique of melting curve thermometry are described in detail.

? Superfluid 3He and Quantum Field Theory
? Large Scale structure of the Universe
? Unconventional Superconductivity
? Heavy Fermions
? Quantum Phase Transitions
? Polarized Fermi Liquids
? Rapid Melting
? 3He Melting Curve
? Low Temperature Thermometry

Cover 1
Contents 10
Progress in Low Temperature Physics 4
Preface 6
Contents of Previous Volumes 16
Vortex Formation and Dynamics in Superfluid 3He and Analogies in Quantum Field Theory 24
Superfluid 3He and quantum field theory 28
Defect formation in quench-cooled superfluid transition 29
Nonequilibrium phase transitions 29
Cosmic large-scale structure 30
Kibble-Zurek mechanism 30
Experimental verification of KZ mechanism 33
Principle of superfluid 3He experiments 36
Outline of experimental method 37
Interpretation of 3He experiments 39
Measurement of vortex lines in 3He-B 41
Critical velocity of vortex formation 41
Rotating states of the superfluid 42
Experimental setup 44
NMR measurement 46
Vortex formation in neutron irradiation 49
Volume or surface mechanism? 54
Threshold velocity for vortex loop escape 59
Properties of threshold velocity 59
Influence of 3He-A on the threshold velocity 60
Other defect structures formed in neutron irradiation 63
Radiation-induced supercooled A . B transition 63
Vortex formation, AB interfaces, and KZ mechanism 64
Spin-mass vortex 66
Vortex formation in gamma radiation 72
Bias dependence of loop extraction 73
Experimental velocity dependence 73
Analytic model of vortex loop escape 75
Neutron-induced vortex formation at low temperatures 79
Experimental techniques 80
Measurement of vortex formation rate 85
Superfluid turbulence in neutron irradiation 86
Calorimetry of vortex network 92
Simulation of loop extraction 95
Initial loop distribution 96
Network evolution under scaling assumptions 100
Direct simulation of network evolution 101
Superfluid transition as a moving-phase front 107
Neutron absorption and heating 108
Thermal gradient and velocity of phase front 110
Quench of infinite vortex tangle 113
Vorticity on microscopic and macroscopic scales 113
Scaling in equilibrium phase transitions 115
Non-equilibrium phase transitions 117
Implications of quench-cooled experiments 118
Topological-defect formation 118
Phase transitions 119
Vortex dynamics and quantum field theory analogs 121
Three topological forces acting on a vortex and their analogs 122
Iordanskii force 123
Superfluid vortex vs. spinning cosmic string 123
Gravitational Aharonov– Bohm effect 126
Asymmetric cross section of scattering from a vortex 128
Iordanskii force: quantized vortex and spinning string 129
Spectral flow force and chiral anomaly 130
Chiral anomaly 130
Anomalous force acting on a continuous vortex and baryogenesis from textures 134
Anomalous force acting on a singular vortex and baryogenesis with strings 135
Analog of magnetogenesis: vortex textures generated in normal– superfluid counterflow 140
Vortex mass: chiral fermions in strong magnetic field 144
‘‘Relativistic’’ mass of the vortex 145
Contribution from bound states to the mass of a singular vortex 146
Kopnin vortex mass in the continuous-core model: connection to chiral fermions in magnetic field 147
Associated hydrodynamic mass 150
Topology of the energy spectrum: gap nodes and their ramifications 152
Final remarks 153
Acknowledgments 154
References 155
On the Heavy Fermion Road 162
Heavy Fermion instabilities 165
Introduction 165
Localization, valence and magnetism 166
From Kondo impurity to Kondo lattice 169
The ‘‘Doniach model’’ 174
Spin fluctuations and the non-Fermi properties 177
Quantum phase transition 181
Fermi surface/mass enhancement 184
Comparison with 3He 186
Experiments 188
Material measurements 188
From transport measurements to heavy Fermion properties 190
Cerium normal phase properties 193
Magnetic furtivity of CeAl3 194
The Kondo lattice CeRu2Si2: P, T phase diagram 196
The Kondo lattice CeRu2Si2: (H, T) phase diagram 203
CeCu6, CeNi2Ge2: local criticality versus spin fluctuations 210
On the electron symmetry between Ce and Yb Kondo lattice: YbRh2Si2 214
Unconventional superconductivity 218
Generalities 219
Magnetism and conventional superconductivity 222
Spin fluctuations and superconductivity 224
Atomic motion and retarded effect 226
Superconductivity and antiferromagnetic instability in cerium compounds 228
Superconductivity near a magnetic quantum critical point CeIn3, CePd2Si2 and CeRh2Si2 228
CeIn3: phase separation 228
CePd2Si2: questions on the range of the coexistence 230
CeRh2Si2: first order and superconductivity 233
CeCu2Si2 and CeCu2Ge2: spin and valence pairing 236
From 3d to Quasi-2d systems: the new 115 family: CeRhIn5 and CeCoIn5 238
CeRhIn5: Coexistence and exclusion 239
CeCoIn5: A new field induced superconducting phase 242
Recent exotic superconductors: CePt3Si/PrOs4Sb12 245
Ferromagnetism and superconductivity 247
The Ferromagnetism of UGe2 247
UGe2 a Ferromagnetic superconductor 253
Ferromagnetism and superconductivity in URhGe and ZrZn2 258
Ferromagnetic fluctuation and superconductivity in eFe? 260
Theory of ferromagnetic superconductors 261
The four uranium heavy Fermion superconductors 264
Generalities 264
UPt3: multicomponent superconductivity and slow fluctuating magnetism 269
UPd2Al3, localized and itinerant ƒ-electrons: a magnetic exciton pairing 275
URu2Si2: from hidden order to large moment 277
The UBe13 enigma: a low-density carrier? 283
Conclusion and perspectives 288
Acknowledgements 290
References 291
Thermodynamics and Transport in Spin-Polarized Liquid 3He: Some Recent Experiments 306
Introduction 310
Normal liquid 3He 313
Landau theory 313
Background 313
Thermodynamic properties 314
Transport properties 315
Shortcomings of Landau theory 316
The ’nearly ferromagnetic’ model 317
Stoner model 317
Paramagnons 318
The ’nearly localized’ model 320
Lattice model of ’nearly localized’ 3He 320
Predictions of the ’nearly localized’ model 322
Liquid 3He at finite temperature 324
Spin-polarized liquid 3He 325
Landau theory for spin-polarized systems 325
Thermodynamic properties 326
Transport properties 327
The ’nearly ferromagnetic’ model at high field 329
The ’nearly localized’ model at high field 331
Metamagnetic transition 332
Behavior at low m 334
Experimental tests 335
Production of highly polarized degenerate liquid 3He 336
Review of polarization techniques 336
Rapid melting of a polarized solid 3He 338
Cooling polarized liquid 3He 339
Thermal coupling of 3He 339
Strategies 340
Polarization homogeneity 341
Magnetic susceptibility 341
Pre-1990 situation 341
Method 342
Experimental cell 343
Rapid melting experiments 346
Analysis 347
Magnetization signal 347
Power released 348
Magnetization curve of liquid 3He 350
Discussion 351
Viscosity 357
Motivation 357
Experimental setup 358
Experimental cell 359
Measurement of the viscosity 360
The viscometer 360
Finite size effects 361
Fast viscosity measurement 364
Results 365
Experimental procedure 365
Polarization-induced viscosity enhancement 368
Analysis of systematic errors 369
Reliability of the viscosity measurement 370
Magnetization gradients 372
Thermal gradients 373
Quantitative analysis of the effect of the polarization 377
Discussion 380
Degenerate regime 381
Landau theory 381
s-wave limit 381
s-p approximation 382
Paramagnon theory 383
Non-degenerate regime 384
Thermal conductivity 385
Aim of the experiment 385
Principle of the experiment 386
Sensitivity of the device from measurements in the unpolarized liquid 387
Measurements in the polarized liquid 389
Analysis 392
Conclusions on the transport in polarized liquid 3He 393
Polarization dependence of the 3He specific heat 394
Principle of the experiment 394
Experimental procedure 394
Data analysis 396
Thermal response time 396
Specific heat 399
Comparison to models 400
Conclusion 403
Acknowledgments 405
Kapitza resistance and surface magnetic relaxation of silver sinters 405
Kapitza resistance of the heat tank silver sinter 406
The magnetic relaxation inside the sinter 407
Effects of polarization gradients in the viscosity cell 410
One-dimensional model 411
Evaluation of the polarization gradient 412
Relaxational heating 413
Thermal characterization of the viscosity cell 415
Linear thermal response 416
Experimental study of the thermal response of the cell 417
Analysis of the delay time 419
One-dimensional model 419
Improvement of the model 420
Thermal parameters 421
Anomalous thermometer response 423
Theoretical estimate of the temperature gradient generated by the magnetic relaxation 424
Temperature difference between the slit and the wall 424
Comparison with the experiment 426
The viscosity of 3He within the Landau theory 426
Non-polarized system 427
Expression of the viscosity coefficient 427
The forward scattering amplitudes 429
Approximation schemes 429
Polarized systems 430
General expression for the viscosity 431
s-wave limit 433
s-p approximation 434
References 440
The 3He Melting Curve and Melting Pressure Thermometry 446
Introduction 448
Melting curve from Pomeranchuk to PLTS-2000 449
The melting pressure minimum and the Pomeranchuk effect 449
Discovery of superfluid 3He 452
The thermodynamic scale and discovery of ordering in solid 3He 454
The greywall scale 455
Development of PLTS-2000 456
Thermodynamic self-consistency 460
Apparatus and procedures for the implementation of MPT 462
Sample cell and capacitance measurement 463
Gas handling system and capacitance calibration 467
Filling the cell and observation of the fixed points in pressure 471
Possible future work 477
Acknowledgements 477
References 477
Author Index 480
Subject Index 498

Erscheint lt. Verlag 1.11.2005
Mitarbeit Herausgeber (Serie): Bill Halperin
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Thermodynamik
Technik
ISBN-10 0-08-046036-4 / 0080460364
ISBN-13 978-0-08-046036-9 / 9780080460369
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich