Introduction to Molecular-Microsimulation for Colloidal Dispersions -  A. Satoh

Introduction to Molecular-Microsimulation for Colloidal Dispersions (eBook)

(Autor)

eBook Download: PDF | EPUB
2003 | 1. Auflage
364 Seiten
Elsevier Science (Verlag)
978-0-08-053494-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
230,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This title provides an introduction to molecular-microsimulation methods for colloidal dispersions and is suitable for both self-study and reference. It provides the reader with a systematic understanding of the theoretical background to simulation methods, together with a wide range of practical skills for developing computational programs. Exercises are included at the end of each chapter to further assist the understanding of the subjects addressed.

- Provides the reader with the theoretical background to molecular-microsimulation methods
- Suitable for both self-study and reference
- Aids the reader in developing programs to meet their own requirements
Introduction to Molecular-Microsimulation for Colloidal Dispersions provides an introduction to molecular-microsimulation methods for colloidal dispersions and is suitable for both self-study and reference. It provides the reader with a systematic understanding of the theoretical background to simulation methods, together with a wide range of practical skills for developing computational programs. Exercises are included at the end of each chapter to further assist the understanding of the subjects addressed. Provides the reader with the theoretical background to molecular-microsimulation methods Suitable for both self-study and reference Aids the reader in developing programs to meet their own requirements

Front Cover 1
Introduction to Molecular-Microsimulation of Colloidal Dispersions 4
Copyright Page 5
Contents 12
Chapter 1. What kinds of molecular-microsimulation methods are useful for colloidal dispersions ? 20
1.1 Monte Carlo methods 21
1.2 Molecular dynamics methods 23
1.3 Stokesian dynamics methods 24
1.4 Brownian dynamics methods 24
References 25
Chapter 2. Statistical ensembles 26
2.1 The concept of statistical ensembles 26
2.2 Statistical ensembles 28
2.3 Thermodynamic quantities 35
References 35
Exercises 36
Chapter 3. Monte Carlo methods 38
3.1 Importance sampling 39
3.2 Markov chains 40
3.3 The Metropolis method 43
3.4 Monte Carlo algorithms for typical statistical ensembles 46
3.5 The cluster-moving Monte Carlo algorithm 53
3.6 The cluster analysis method 57
3.7 Some examples of Monte Carlo simulations 60
References 79
Exercises 81
Chapter 4. Governing equations of the flow field 83
4.1 The Navier-Stokes equation 83
4.2 The Stokes equation 86
4.3 The linear velocity field 89
4.4 Forces, torques, and stresslets 90
References 92
Exercises 92
Chapter 5. Theory for the motion of a single particle and two particles in a fluid 95
5.1 Theory for single particle motion 95
5.2 The far-field theory for the motion of two particles 104
5.3 General theory for the motion of two particles 106
References 113
Exercises 113
Chapter 6. The approximation of multi-body hydrodynamic interactions among particles in a dense colloidal dispersion 121
6.1 The additivity of forces 121
6.2 The additivity of velocities 124
References 126
Exercises 126
Chapter 7. Molecular dynamics methods for a dilute colloidal dispersion 128
7.1 Molecular dynamics for a spherical particle system 128
7.2 Molecular dynamics for a spheroidal particle system 129
7.3 Molecular dynamics with the inertia term for spherical particles 131
Exercises 132
Chapter 8. Stokesian dynamics methods 134
8.1 The approximation of additivity of forces 134
8.2 The approximation of additivity of velocities 139
8.3 The nondimensionalization method 143
Exercises 145
Chapter 9. Brownian dynamics methods 146
9.1 The Langevin equation 146
9.2 The Generalized Langevin equation 151
9.3 The diffusion tensor 154
9.4 Brownian dynamics algorithms with hydrodynamic interactions between particles 160
9.5 The nondimensionalization method 165
9.6 The Brownian dynamics algorithm for axisymmetric particles 165
References 169
Exercises 170
Chapter 10. Typical properties of colloidal dispersions calculable by molecular-microsimulations 172
10.1 The pair correlation function 172
10.2 Rheology 173
References 177
Exercises 177
Chapter 11. The methodology of simulations 179
11.1 The initial configuration of particles 179
11.2 Boundary conditions 181
11.3 The methodology to reduce computation time 186
11.4 Long-range correction 189
11.5 The evaluation of the pair correlation function 190
11.6 The estimate of errors in the averaged values 192
11.7 The Ewald sum (the treatment of long-range order potential) 194
11.8 The criterion for the overlap of spherocylinder particles 198
References 200
Exercises 201
Chapter 12. Some examples of microsimulations 203
12.1 Stokesian dynamics simulations 203
12.2 Brownian dynamics simulations 213
References 218
Exercises 218
Chapter 13. Higher order approximations of multi-body hydrodynamic interactions 220
13.1 The Durlofsky-Brady-Bossis method 220
13.2 Effective mobility tensors with screening effects 224
References 227
Exercises 227
Chapter 14. Other microsimulation methods 229
14.1 The cluster-based Stokesian dynamics method 229
14.2 The dissipative particle dynamics method 234
14.3 The lattice Boltzmann method 248
References 252
Exercises 254
Chapter 15. Theoretical analysis of the orientational distribution of spherocylinder particles with Brownian motion 258
15.1 The particle model 258
15.2 Rotational motion of a particle in a simple shear flow 258
15.3 The basic equation of the orientational distribution function 260
15.4 Solution by means of Galerkin's method 264
References 265
Exercises 267
APPENDICES 268
A1. Vectors and tensors 269
References 272
A2. The Dirac delta function and Fourier integrals 273
References 276
A3. The Lennard-Jones potential 277
References 278
A4. Expressions of resistance and mobility functions for spherical particles 280
A4.1 Resistance functions 280
A4.2 Mobility functions 283
References 286
A5. Diffusion coefficients of circular cylinder particles and the resistance functions of spherocylinders 287
References 288
A6. Derivation of expressions for long-range interactions (the Ewald sum) 289
A6.1 Interactions between charged particles 289
A6.2 Interactions between electric dipoles 292
References 297
A7. Unit systems used in magnetic materials 298
A8. The virial equation of state 299
References 303
A9. Random numbers 304
Ag. 1 Uniform random numbers 304
A9.2 Non-uniform random numbers 305
References 311
A10. The numerical calculation of resistance and mobility functions 312
References 316
A11. Several FORTRAN subroutines for simulations 317
A 11.1 Initial configurations 317
A11.2 Random numbers (SUBROUTINE RANCAL) 320
A11.3 The cell index method for a two-dimensional system 321
A11.4 Calculation of forces and interaction energies 323
A11.5 Calculation of forces, torques, and viscosity for ferromagnetic colloidal dispersions (SUBROUTINE FORCE) 326
A11.6 Calculation of the radial distribution function by means of the canonical ensemble algorithm (MCRADIA1 .FORT) 330
A11.7 Calculation of resistance functions (RESIST.FORT, RESIST2.FORT) 338
List of symbols 356
Index 361

Chapter 1

What Kinds of Molecular-Microsimulation Methods are Useful for Colloidal Dispersions ?


A. Satoh    Faculty of System Science and Technology, Akita Prefectural University, Japan

A colloidal dispersion is a suspension of fine particles (dispersoid) which are stably dispersed in a base liquid (dispersion medium). The dimensions of the dispersed particles are generally within the range of 1 μm to 10 pm. If the particles are smaller than about 1 nm, the dispersion behaves like a true solution, and at the other end of the scale the particles tend to sink due to the force of gravity. Hence a dispersion of particles outside this range is not regarded as being in the colloidal state. The main objective of the present book is to discuss molecular-microsimulation methods for colloidal dispersions, whereas general matters concerning colloid science should be referred to in other textbooks [13]. In this book, we restrict our attention to solid particles as colloidal ones which are not distorted in shape in a flow field.

One possible technique for generating functional or intelligent materials is to systematically combine known materials to make a new material with the desired functional properties. Such functional or intelligent materials are expected to exhibit highly attractive properties under certain circumstances. This method of generating new materials is similar to the concept of developing micromachines in the mechanical engineering field. Such intelligent materials may be called “artificially-controlled materials.” According to this concept, new functional colloids such as ferrofluids, ER fluids, and MR suspensions have been generated in the colloid physics-engineering field. These functional fluids are generated by making functional particles stably dispersed in a base liquid. They behave as if the liquid itself had functional properties in an external field such as an applied magnetic or electric field. Another example of expanding the concept of the synthesis of functional colloids in the materials field of the surface quality change leads to the possibility of developing higher quality magnetic recording materials (tapes).

In order to investigate a physical phenomenon theoretically, the governing or basic equations are first constructed, and then solved analytically or numerically. Where possible, the theoretical or simulation results are compared with experimental observations in order to deepen our understanding of the physical phenomena. When we construct governing equations for a physical phenomenon, we don’t usually need the information of the microstructure of molecules or atoms which constitute the system, rather we generally stand on a larger scale. For example, let us consider the flow problem of water around a circular cylinder under the condition of an ordinary pressure. The physical phenomenon in this case is governed by the Navier-Stokes equation which is well known as a basic equation for flow problems in the fluid mechanics field. In the derivation of the Navier-Stokes equation, we never need the detailed information concerning a water molecule which is composed of one oxygen and two hydrogen atoms. Rather, water is regarded as a continuum, and the Navier-Stokes equation is derived on such a continuum scale.

How does the molecular simulation or microsimulation deal with physical phenomena? In molecular-microsimulations, we stand on the microscopic level of the constituents of a system, such as atoms, molecules or sometimes ultrafine particles, and follow the motion of the constituents to evaluate microscopic or macroscopic physical quantities. Hence, in investigating the above-mentioned flow problem around a cylinder, the equations for the translational and rotational motion of water molecules have to be solved, and the desired macroscopic quantities are evaluated from an averaging procedure over the corresponding microscopic ones, which may be a function of molecular positions and velocities. In this example, the flow field is evaluated by averaging the velocity of each molecule and illustrates the fact that we cannot simulate a physical phenomenon unless the molecular structure and interaction energies between molecules are known. It is, therefore, clear that molecular- microsimulation methods are completely different from numerical analysis methods such as finite-difference or finite-element methods. The former methods stand on the microscopic level of molecules or fine particles, and the latter methods on the macroscopic level of a continuum, in which the governing equations are discretized and these algebraic equations are solved numerically.

Molecular-microsimulations for colloidal dispersions may be classified mainly into four groups based on the simulation method. Monte Carlo methods are highly useful for thermodynamic equilibrium in a quiescent flow field. If the particle Brownian motion is negligible and a dispersion is dilute, molecular dynamics methods are applicable. If the particle Brownian motion can be neglected and a dispersion is not dilute, we have to take into account hydrodynamic interactions among particles. In this case, Stokesian dynamics methods have to be used instead of molecular dynamics methods. Finally, if colloidal particles are not sufficiently smaller than micron-order and the particle Brownian motion has to be taken into account, then Brownian dynamics methods are indispensable. In the following sections we just survey the essence of each simulation method.

1.1 Monte Carlo Methods


The Monte Carlo method is named after the famous gambling town, Monte Carlo, which is the Principality of Monaco. In this method, a series of microscopic states is generated successively through the judgment of whether or not a new state is acceptable using random numbers. This procedure is similar to a gambling game where success or failure is determined by dice. Monte Carlo methods are used for simulating physical phenomena for a system in thermodynamic equilibrium, and are therefore based on the theory of equilibrium statistical mechanics.

We now consider a canonical ensemble of the particle number N, system volume V, and temperature T. For this statistical ensemble, the probability density function, that is, the canonical distribution p(r) is written as

r=1Qexp−1kTUr,

  (1.1)

in which the abbreviation r is used for r1, r2, …, rN for simplicity. With this distribution, the statistical average of a certain quality A is expressed as

=∫Arρrdr,

  (1.2)

in which k is Boltzmann’s constant, dr = dx1dy1dz1··· dxNdyNdzN , Q is the configuration integral, and U is the total interaction energy of a system. The expressions for Q and U are written as

=∫exp−1kTUrdr,

  (1.3)

=∑i=1N∑j=1Nuijj>i

  (1.4)

In Eq. (1.4), uij is the interaction energy between particles i and j, and the contribution of three-body interactions to the system energy has been neglected.

Since the configuration integral Q is 3 N-fold for a three-dimensional system, analytical evaluation is generally impracticable and numerical integration methods such as the Simpson method are also quite unsuitable for multi-fold integrals. However, if it is taken into account that the integrand is an exponential function, we can expect that certain particle configurations make a further more important contribution to the integral than others. Thus, if such important microscopic states can be sampled with priority in a numerical procedure, then it may be possible to evaluate the ensemble average, Eq. (1.2), in a reasonable time. This is exactly the concept of importance sampling. It is the Monte Carlo method that generates microscopic states successively with the concept of important sampling. As will be shown in Sec. 3.3, Metropolis’ transition probability is almost universally used for the transition of one microscopic state to the next. With this transition probability, the probability of realizing a microscopic state is determined by the canonical distribution for the case of the canonical ensemble. Hence Eq. (1.2) can be simplified as

≈∑n=1MArn/M

  (1.5)

in which M is the total sampling number, and rn is the n-th sampled microscopic state.

On the other hand, the quantity ¯, which is measured in the laboratory, is the time average of A and expressed as

¯=t→∞lim1t−t0∫t0tAτdτ.

  (1.6)

The relationship between the statistical ensemble and the time average ¯ will be discussed later in Sec. 2.1.

1.2 Molecular Dynamics Methods


In this book, we consider molecular dynamics methods from the viewpoint of microsimulation for colloidal dispersions. Thus general matters of molecular dynamics methods should be referred to...

Erscheint lt. Verlag 20.6.2003
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie Mechanik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-053494-5 / 0080534945
ISBN-13 978-0-08-053494-7 / 9780080534947
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 16,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 13,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99