Für diesen Artikel ist leider kein Bild verfügbar.

Provability, Computability and Reflection (eBook)

eBook Download: PDF
2000 | 1. Auflage
650 Seiten
Elsevier Science (Verlag)
978-0-08-095753-1 (ISBN)
Systemvoraussetzungen
219,13 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Provability, Computability and Reflection
Provability, Computability and Reflection

Front Cover 1
A Survey of Mathematical Logic 4
Copyright Page 5
Contents 8
Preface 6
PART ONE GENERAL SKETCHES 14
CHAPTER I. THE AXIOMATIC METHOD 16
$ 1. Geometry and axiomatic systems 16
$ 2. The problem of adequacy 20
$ 3. The problem of evidence 23
$ 4. A very elementary system L 29
$ 5. The theory of non-negative integers 34
$ 6. Gödel’s theorems 38
$ 7. Formal theories as applied elementary logics 43
CHAPTER II. EIGHTY YEARS OF FOUNDATIONAL STUDIES 49
$ 1. Analysis, reduction and formalization 49
$ 2. Anthropologism 54
$ 3. Finitism 56
$ 4. Intuitionism 58
$ 5. Predicativism: standard results on number as being 59
$ 6. Predicativism: predicative analysis and beyond 61
$ 7. Platonism 63
$ 8. Logic in the narrower sense 68
$ 9. Applications 71
CHAPTER III. ON FORMALIZATION 72
$ 1. Systematization 72
$ 2. Communication 73
$ 3. Clarity and consolidation 74
$ 4. Rigour 75
$ 5. Approximation to intuition 76
$ 6. Application to philosophy 78
$ 7. Too many digits 79
$ 8. Ideal language 80
$ 9. How artificial a language? 81
$ 10. The paradoxes 82
CHAPTER IV. THE AXIOMATIZATION OF ARITHMETIC 83
$ 1. Introduction 83
$ 2. Grassmann’s calculus 84
$ 3. Dedekind’s letter 88
$ 4. Dedekind’s essay 89
$ 5. Adequacy of Dedekind’s characterization 92
$ 6. Dedekind and Frege 94
CHAPTER V. COMPUTATION 97
$ 1. The concept of computability 97
$ 2. General recursive functions 104
$ 3. The Friedberg-Mucnik theorem 108
$ 4. Metamathematics 112
$ 5. Symbolic logic and calculating machines 115
$ 6. The control of errors in calculating machines 122
PART TWO CALCULATING MACHINES 142
CHAPTER VI. A VARIANT TO TURING’S THEORY OF CALCULATING MACHINES 144
$ 1. Introduction 144
$ 2. The basic machine B 145
$ 3. All recursive functions are B-computable 150
$ 4. Basic instructions 161
$ 5. Universal Turing machines 167
$ 6. Theorem-proving machines 171
CHAPTER VII. UNIVERSAL TURING MACHINFS: AN EXERCISE IN CODING 177
CHAPTER VIII. THE LOGIC OF AUTOMATA 192
$ 1. Introduction 192
$ 2. Automata and nets 192
$ 3. Transition matrices and matrix form nets 219
$ 4. Cycles, nets, and quantifiers 231
CHAPTER IX. TOWARD MECHANICAL MATHEMATICS 241
$ 1. Introduction 241
$ 2. The propositional calculus (system P) 246
$ 3. Program I: the propositional calculus P 248
$ 4. Program II: selecting theorems in the propositional calculus 251
$ 5. Completeness and consistency of the system P and Ps 253
$ 6. The system Pe : the propositional calculus with equality 254
$ 7. Preliminaries to the predicate calculus 255
$ 8. The system Qp and the AE predicate calculus 257
$ 9. Program III 260
$ 10. Systems Qq and Qr: alternative formulations of the AE predicate calculus 262
$ 11. System Q: the whole predicate calculus with equality 265
$ 12. Conclusions 270
Appendices I—VII 276
CHAPTER X. CIRCUIT SYNTHFSIS BY SOLVING SEQUENTIAL BOOLEAN EQUATIONS 286
$ 1. Summary of problems and results 286
$ 2. Sequential Boolean functionals and equations 287
$ 3. The method of sequential tables 289
$ 4. Deterministic solutions 291
$ 5. Related problems 296
$ 6. An effective criterion of general solvability 298
$ 7. A sufficient condition for effective solvability 303
$ 8. An effective criterion of effective solvability 307
$ 9. The normal form (S) of sequential Boolean equations 311
$ 10. Apparently richer languages 316
$ 11. Turing machines and growing automata 318
PART THREE FORMAL NUMBER THEORY 324
CHAPTER XI. THE PREDICATE CALCULUS 326
$ 1. The propositional calculus 326
$ 2. Formulations of the predicate calculus 328
$ 3. Completeness of the predicate calculus 336
CHAPTER XII. MANY-SORTED PREDICATE CALCULI 341
$ 1. One-sorted and many-sorted theories 341
§ 2. The many-sorted elementary logics Ln 345
$ 3. The theorem (I) and the completeness of Ln 347
$ 4. Proof of the theorem (IV) 348
CHAPTER XIII. THE ARITHMETIZATION OF METAMATHEMATICS 353
$ 1. Gödel numbering 353
$ 2. Recursive functions and the system Z 361
$ 3. Bernays’ lemma 364
$ 4. Arithmetic translations of axiom systems 371
CHAPTER XIV. ACKERMANN’S CONSISTENCY PROOF 381
$ 1. The system Za 381
$ 2. Proof of finiteness 385
$ 3. Estimates of the substituents 389
$ 4. Interpretation of nonfinitist proofs 391
CHAPTER XV. PARTIAL SYSTEMS OF NUMBER THEORY 395
$ 1. Skolem’s non-standard model for number theory 395
$ 2. Some applications of formalized consistency proofs 398
PART FOUR IMPREDICATIVE SET THEORY 402
CHAPTER XVI. DIFFERENT AXIOM SYSTEMS 404
$ 1. The paradoxes 404
$ 2. Zermelo’s set theory 409
$ 3. The Bernays set theory 415
$ 4. The theory of types, negative types, and “new foundations” 423
$ 5. A formal system of logic 436
$ 6. The systems of Ackermann and Frege 444
CHAPTER XVII. RELATIVE STRENGTH AND REDUCIBILITY 453
$ 1. Relation between P and Q 453
$ 2. Finite axiomatization 457
$ 3. Finite sets and natural numbers 460
CHAPTER XVIII. TRUTH DEFINITIONS AND CONSISTENCY PROOFS 464
$ 1. Introduction 464
$ 2. A truth definition for Zermelo set theory 466
$ 3. Remarks on the construction of truth definitions in general 476
$ 4. Consistency proofs via truth definitions 480
$ 5. Relativity of number theory and in particular of induction 487
$ 6. Explanatory remarks 494
CHAPTER XIX. BETWEES NUMBER THEORY AKD SET THEORY 499
$ 1. General set theory 501
$ 2. Predicative set theory 510
$ 3. Impredicative collections and .-consistency 518
CHAPTER XX. SOME PARTIAL SYSTEMS 528
$ 1. Some formal details on class axioms 528
$ 2. A new theory of element and number 536
$ 3. Set-theoretical basis for real numbers 546
$ 4. Functions of real variables 553
PART FIVE PREDICATIVE SET THEORY 556
CHAPTER XXI. CERTAIN PREDICATES DEFINED BY INDUCTION SCHEMATA 558
CHAPTER XXII. UNDECIDABLE SENTENCES SUGGESTED BY SEMANTIC PARADOXES 569
$ 1. Introduction 569
$ 2. Preliminaries 570
$ 3. Conditions which the set theory is to satisfy 572
$ 4. The Epimenides paradox 575
$ 5. The Richard paradox 577
$ 6. Final remarks 580
CHAPTER XXIII. THE FORMALIZATION OF MATHEMATICS 582
$ 1. Original sin of the formal logician 582
$ 2. Historical perspective 582
$ 3. What is a set? 584
$ 4. The indenumerable and the impredicative 585
$ 5. The limitations upon formalization 587
$ 6. A constructive theory 588
$ 7. The denumerability of all sets 590
$ 8. Consistency and adequacy 592
$ 9. The axiom of reducibility 597
$ 10. The vicious-circle principle 599
$ 11. Predicative sets and constructive ordinals 601
$ 12. Concluding remarks 604
CHAPTER XXIV. SOME FORMAL DETAILS ON PREDICATIVE SET THEORIES 608
$ 1. The underlying logic 608
§ 2. The axioms of the theory S 612
§ 3. Preliminary considerations 616
§ 4. The theory of non-negative integers 620
§ 5. The enumerability of all sets 624
§ 6. Consequences of the enumerations 629
§ 7. The theory of real numbers 631
§ 8. Intuitive models 634
§ 9. Proofs of consistency 637
$ 10. The system R 642
CHAPTER XXV. ORDINAL NUMBERS AND PREDICATIVE SET THEORY 647
$ 1. Systems of notation for ordinal numbers 648
$ 2. Strongly effective systems 650
$ 3. The Church-Kleene class B and a new class C 655
$ 4. Partial Herbrand recursive functions 660
$ 5. Predicative set theory 662
§ 6. Two tentative definitions of predicative sets 669
$ 7. System H: the hyperarithmetic set theory 671

Erscheint lt. Verlag 1.4.2000
Sprache englisch
Themenwelt Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Logik / Mengenlehre
Naturwissenschaften
Technik
ISBN-10 0-08-095753-6 / 0080957536
ISBN-13 978-0-08-095753-1 / 9780080957531
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL …

von Edwin Schicker

eBook Download (2017)
Springer Vieweg (Verlag)
34,99
Unlock the power of deep learning for swift and enhanced results

von Giuseppe Ciaburro

eBook Download (2024)
Packt Publishing (Verlag)
35,99