Introduction to Environmental Forensics -  Robert D. Morrison,  Brian L. Murphy

Introduction to Environmental Forensics (eBook)

eBook Download: PDF
2007 | 2. Auflage
776 Seiten
Elsevier Science (Verlag)
978-0-08-047867-8 (ISBN)
Systemvoraussetzungen
89,31 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Introduction to Environmental Forensics helps readers unravel the complexities of environmental pollution cases. It outlines techniques for identifying the source of a contaminant release, when the release occurred, and the extent of human exposure. Written by leading experts in environmental investigations, the text provides detailed information on chemical fingerprinting techniques applicable to ground water, soils, sediments, and air, plus an in-depth look at petroleum hydrocarbons.

It gives the environmental scientist, engineer, and legal specialist a complete toolbox for conducting forensic investigations. It demonstrates the range of scientific analyses that are available to answer questions of environmental liability and support a legal argument, and provides several examples and case studies to illustrate how these methods are applied.

This is a textbook that would prove useful to a range of disciplines, including environmental scientists involved in water and air pollution, contaminated land and geographical information systems, and archaeologists, hydrochemists and geochemists interested in dating sources of pollution.

* Co-edited by one of the experts from the Civil Action case in Woburn, MA
* Provides essential information about identifying environmental contaminants responsible for millions of deaths per year
* Contains the latest information and coverage of issues crucial to both forensics investigators and environmental scientists
Introduction to Environmental Forensics helps readers unravel the complexities of environmental pollution cases. It outlines techniques for identifying the source of a contaminant release, when the release occurred, and the extent of human exposure. Written by leading experts in environmental investigations, the text provides detailed information on chemical "e;fingerprinting"e; techniques applicable to ground water, soils, sediments, and air, plus an in-depth look at petroleum hydrocarbons. It gives the environmental scientist, engineer, and legal specialist a complete toolbox for conducting forensic investigations. It demonstrates the range of scientific analyses that are available to answer questions of environmental liability and support a legal argument, and provides several examples and case studies to illustrate how these methods are applied. This is a textbook that would prove useful to a range of disciplines, including environmental scientists involved in water and air pollution, contaminated land and geographical information systems; and archaeologists, hydrochemists and geochemists interested in dating sources of pollution. - Co-edited by one of the experts from the Civil Action case in Woburn, MA- Provides essential information about identifying environmental contaminants responsible for millions of deaths per year- Contains the latest information and coverage of issues crucial to both forensics investigators and environmental scientists

Front cover 1
Title page 4
Copyright page 5
Table of contents 6
Introduction to the Second Edition 8
Contributors 12
Editors 12
Chapter Authors 13
1 APPLICATIONS OF ENVIRONMENTAL FORENSICS 28
1.1 Introduction 28
1.2 Liability Allocation at Superfund Sites 29
1.2.1 Equivalence of Harm and Risk 31
1.2.2 Allocation Principles 32
1.3 Environmental Site Assessment 34
1.4 Insurance Litigation 35
1.4.1 Imminence of Off-site Migration 36
1.4.2 Trigger of Coverage 36
1.4.3 Expected and Intended 37
1.4.4 Sudden and Accidental 38
1.4.5 Equitable Cost Sharing 39
1.5 Toxic Torts 39
1.5.1 Epidemiology 40
1.5.1.1 Association and Causation 40
1.5.1.2 Texas Sharpshooter Effect 41
1.5.1.3 Statistical Significance 42
1.5.2 Differential Diagnosis 43
1.5.3 Risk Assessment 44
1.6 Natural Resource Damage Assessment 45
1.7 Marine Oil Pollution 46
Acknowledgments 47
References 47
2 SITE HISTORY: THE FIRST TOOL OF THE ENVIRONMENTAL FORENSICS TEAM 50
2.1 Introduction 51
2.2 Hypothetical Situation 1: Single-party sites with a history of preceding uses and users that may have contributed to the current problem 57
2.2.1 Task 1: Corporate Succession Research 57
2.2.2 Task 2: Facilities Research 59
2.2.3 Task 3: Ownership and Operations Research 59
2.2.3.1 Ownership History through Chain-of-Title and Tax Research 60
2.2.3.2 Operations Research 60
2.2.3.3 State Level Research 61
2.2.3.4 Local Level Research 62
2.2.4 Task 4: Work Product 62
2.3 Hypothetical Situation 2: A multiparty site, such as a regionally spread groundwater plume, where operations that resulted in chemical releases to the environment occurred 63
2.3.1 Task 1: Past Occupants and Locations of Operations 64
2.3.2 Task 2: Target Entity List 65
2.3.3 Task 3: State and Local Agency Research 65
2.3.4 Task 4: Conduct Federal Archive Research 67
2.3.5 Task 5: Industry Standards Research 69
2.4 Hypothetical Situation 3: A multiparty site, such as a landfill, to which wastes generated off-site were transported and commingled over a period of time 70
2.4.1 Task 1: Landfill History 70
2.4.2 Task 2: Generator Identification 71
2.4.3 Task 3: Narrative Completion 72
2.5 Conclusion 72
References 73
Further Reading 73
3 PHOTOGRAMMETRY, PHOTOINTERPRETATION, AND DIGITAL IMAGING AND MAPPING IN ENVIRONMENTAL FORENSICS 76
3.1 The Aerial Photographic Record 76
3.2 Principles of Photogrammetry 78
3.2.1 Photographic Scale 78
3.2.2 Radial Displacement 79
3.2.3 Stereo Photographs and Stereo Viewing 79
3.2.4 Resolution and Photographic Media 80
3.2.5 Digital Image Processing 81
3.3 Photointerpretation 85
3.3.1 Photointerpretation versus Photo Reading 85
3.3.2 Photointerpretation in Environmental Forensics 87
3.4 Analytical Products and Preparation of Exhibits 91
3.4.1 Maps 91
3.4.2 Geographic Information Systems 93
3.4.3 Terrain Visualization 94
3.5 Case Studies 94
3.5.1 Case Study: Informal Dumping Area Covered by Plant Addition 94
3.5.2 Case Study: Product Transfer and Storage Spillage at Circuit Board Fabrication Plants 96
3.5.3 Case Study: Chemical Drainage from Treated Wood at a Creosote Plant 99
3.5.4 Case Study: Dark Staining at a Maintenance Yard 99
3.6 Conclusions 105
References 106
4 THE MEASUREMENT PROCESS 110
4.1 Introduction 111
4.2 Measurement Process 112
4.3 Planning 117
4.3.1 Questions 118
4.3.2 Decision Unit 118
4.3.3 Confidence 120
4.3.4 Sample Plan Design 121
4.3.4.1 Sampling for Identification 122
4.3.4.2 Sampling to Determine Concentration 123
4.3.4.3 Quality Control Measurements 124
4.4 Implementation 126
4.4.1 Plan Implementation 126
4.4.1.1 Soil Gas 126
4.4.1.2 Soil 127
4.4.1.3 Sediment 129
4.4.1.4 Groundwater 130
4.4.1.5 Surface Water 130
4.4.1.6 Surfaces 131
4.4.1.7 Ambient Air 131
4.4.2 Sample Handling 132
4.4.3 Subsampling 133
4.4.4 Analysis 134
4.5 Assessment 138
4.5.1 Documentation 138
4.5.2 Quality Control Interpretation 139
4.5.3 Statistical Analysis 143
4.5.4 Data Usability Assessment 143
4.6 Summary 145
References 145
5 STATISTICAL METHODS 156
5.1 Introduction 157
5.2 Background 159
5.2.1 Population Parameters and Sample Statistics 159
5.2.2 Population Distributions 161
5.2.3 Confidence Limits and Hypothesis Tests 164
5.2.3.1 Confidence Limits 165
5.2.3.2 Hypothesis Testing 167
5.2.3.3 Normality, Representativeness, and Independence 169
5.3 Applications in Environmental Forensics 171
5.3.1 Comparing Sample Means 171
5.3.1.1 Student’s t-Test 171
5.3.1.2 Wilcoxon's Rank Sum Test 177
5.3.1.3 Paired t-Test 179
5.3.1.4 Analysis of Variance (ANOVA) 181
5.3.1.5 Kruskal-Wallis Test 184
5.3.1.6 Issues in Sampling Design 185
5.3.2 Linear Correlation and Linear Regression Analysis 187
5.3.2.1 Linear Regression Analysis 188
5.3.2.2 Pearson's Product Moment Correlation Coefficient 191
5.3.2.3 Spearman Rank Correlation Coefficient 195
5.3.2.4 Multiple Linear Regression and Correlation 197
5.3.3 Mapping: Trends and Spatial Persistence 198
5.3.3.1 Trends, Spatial Persistence, and Autocorrelation 198
5.3.3.2 Isopleth Mapping and Interpolation Methods 200
5.3.3.3 Estimation of Areal Averages 204
5.4 Conclusions 206
References 207
Further Reading 209
6 STATISTICAL TOOLS FOR RATIO DATA 212
6.1 Introduction 212
6.2 Chemical Indicator Concentrations and Log-Log Regression Models 213
6.2.1 Methodology 214
6.2.2 Examples 215
6.2.3 Discussion 217
6.2.4 Log-Log Plots: Conclusions 219
6.3 Log-Ratio-Log Plots 220
6.3.1 Log-Ratio-Log Plots and Interesting Patterns 223
6.3.2 Hypothesis Log Testing 223
6.3.3 Log-Ratio-Log Plots: Conclusions 225
6.4 Evaluating Chemical Profiles Using Log(ratio) (LR) Data 225
6.4.1 The Problem 226
6.4.2 A Two-Sample Solution 226
6.4.3 Computing Probabilities for Acceptable Intervals 229
6.4.4 Two-Sample Log-Ratio Difference Tests: A Bootstrap Alternative 230
6.4.5 Many Samples 231
6.4.6 Log(ratio) Data: Conclusions 232
6.5 Final Conclusions 232
References 232
7 PRINCIPAL COMPONENTS ANALYSIS AND RECEPTOR MODELS IN ENVIRONMENTAL FORENSICS 234
7.1 Introduction 235
7.1.1 Philosophy and Approach: A Case for Exploratory Data Analysis 235
7.1.2 Formal Description of the Receptor Modeling Problem 237
7.1.3 Demonstration Data Sets 239
7.2 Principal Components Analysis 241
7.2.1 PCA Overview 241
7.2.2 Data Transformations 244
7.2.3 Eigenvector Decomposition 247
7.2.4 Determining the Number of Significant Principal Components 249
7.2.4.1 Single Index Methods 250
7.2.4.2 Variable-by-Variable Goodness of Fit 253
7.2.5 PCA Output 258
7.3 Self-Training Receptor Modeling Methods 260
7.3.1 Polytopic Vector Analysis (PVA) 262
7.3.1.1 Scaling Functions: Back-Calculation to Original Metric 263
7.3.1.2 Eigenvector Decomposition and Determining the Number of End-Members 264
7.3.1.3 Determining End-Member Compositions and Mixing Proportions 265
7.3.1.4 Results of PVA Applied to Data Set 2 270
7.3.2 Alternating Least Squares 271
7.3.2.1 Initial estimates 272
7.3.2.2 Least squares 272
7.3.2.3 Constraints 272
7.3.2.4 Convergence 273
7.3.3 Target Transformation Factor Analysis 273
7.3.4 Extended Self-Modeling Curve Resolution 275
7.3.5 Positive Matrix Factorization 277
7.4 The Influence of Alteration Processes on Mixing Models 278
7.5 Summary 279
Acknowledgments 281
References 281
Appendix 288
8 RECEPTOR MODELS FOR SOURCE APPORTIONMENT OF SUSPENDED PARTICLES 300
8.1 Introduction 300
8.2 Chemical Mass Balance (CMB) Receptor Models 302
8.2.1 Tracer Solution and Enrichment Factors 303
8.2.2 Single Sample Least Squares Minimization Solution 304
8.2.3 Multiple Sample Solutions 305
8.3 Empirical Receptor Models 307
8.3.1 Temporal and Spatial Correlation Eigenvectors 307
8.3.2 Neural Networks 308
8.3.3 Time Series 308
8.4 Physical, Chemical, and Temporal Properties 309
8.4.1 Particle Size 309
8.4.2 Chemical Composition 311
8.5 Specific Organic Compounds 314
8.5.1 Temporal and Spatial Variability 317
8.6 Source Apportionment Examples 320
8.6.1 Sources of Wintertime PM2.5 in Denver, CO 320
8.6.2 Causes of Haze in the Mt. Zirkel Wilderness Area 321
8.6.3 Particle Deposition Near a Cement Production Facility 323
8.7 Summary and Conclusions 324
References 325
9 CHEMICAL FINGERPRINTING METHODS 338
9.1 Introduction 339
9.2 Overview of Chemical Fingerprinting Methodology 342
9.2.1 EPA Reference Methods 344
9.2.2 Technical Challenges 346
9.2.3 Method Specialization 347
9.2.4 Tiered Approach 349
9.3 Quality Assurance and Quality Control 349
9.3.1 Quality Assurance 352
9.3.2 Quality Control 353
9.3.2.1 QC Parameters for Sample Preparation 353
9.3.2.2 QC Parameters for Analytical Procedures 358
9.4 Volatile Hydrocarbon Fingerprinting Methods 364
9.4.1 Volatile Hydrocarbons in Air and Vapor by GC/MS 367
9.4.2 Collection of Solid and Liquid Samples for Volatile Hydrocarbon Analysis 372
9.4.2.1 Soil Samples 374
9.4.2.2 Water Samples 375
9.4.2.3 NAPL Samples 375
9.4.3 PIANO and Nonhydrocarbon Analysis by Purge-and-Trap GC/MS 375
9.4.3.1 Standard Preparation 376
9.4.3.2 Sample Preparation 376
9.4.3.3 Sample Analysis 378
9.4.4 PIANO and Nonhydrocabon Analysis by Direct Injection GC/MS 380
9.4.4.1 Standard Preparation 382
9.4.4.2 Sample Preparation 382
9.4.4.3 Sample Analysis 382
9.4.5 Alkyl Lead Gasoline Additives by Direct Injection GC/MS 384
9.4.6 Diamondoid Analysis by Direct Injection GC/MS 387
9.4.7 Oxygenate Analysis by Direct Injection GC/MS in NAPL 389
9.4.8 Analysis of Other Polar Fuel Additives 396
9.4.9 Full Range Whole Oil Analysis 396
9.5 Semivolatile Hydrocarbon Fingerprinting Methods 398
9.5.1 Sample Preparation 399
9.5.1.1 Sample Extractions 399
9.5.1.2 Extract Cleanup and Purification 403
9.5.2 Sample Analysis 406
9.5.2.1 High Resolution Hydrocarbon Fingerprinting by GC/FID 406
9.5.2.2 Polycyclic Aromatic Hydrocarbons by GC/MS/SIM 416
9.5.2.3 Saturates and Biomarkers by GC/MS/SIM 429
9.5.3 Ancillary Hydrocarbon Fingerprinting Techniques 440
9.5.3.1 Conventional Simulated Distillation 440
9.5.3.2 High Temperature Simulated Distillation 441
9.5.3.3 Stable Isotopes of Bulk Hydrocarbons 442
9.5.3.4 Compound-Specific Stable Isotope Measurements 445
9.5.3.5 Two-Dimensional Gas Chromatography 446
9.5.3.6 Electrospray Ionization Mass Spectrometry (ESI-MS) 447
9.6 Polychlorinated Biphenyl Fingerprinting Methods 448
9.6.1 Current Practices 454
9.6.2 PCB Forensic Methods 457
9.6.2.1 Sample Preparation 458
9.6.2.2 Extract Cleanup 458
9.6.2.3 Internal Standards (EPA Method 8000B) 460
9.6.2.4 PCB Analysis by GC/ECD (EPA Method 8082) 460
9.6.2.5 PCB Analysis by GC/MS (EPA Method 8270C/680) 462
9.6.2.6 PCB Analysis by GC/HRMS (EPA Method 1668A) 463
References 466
10 APPLICATION OF STABLE ISOTOPES AND RADIOISOTOPES IN ENVIRONMENTAL FORENSICS 482
10.1 Introduction 482
10.2 Radioisotope Age Dating of Contaminants in Sediments and Groundwater 485
10.2.1 Sediment Dating 485
10.2.2 Groundwater Dating 486
10.3 Use of Stable Isotopes to Identify Contaminant Sources 487
10.3.1 Origin of Isotopic Carbon Differences 488
10.3.2 Reporting Isotope Measurements 489
10.3.3 Bulk Isotope Values 490
10.3.4 Carbon Isotope GCIRMS for Hydrocarbons 494
10.3.5 Sources and Sink of Atmospheric Gases 503
10.3.6 Use of GCIRMS for MTBE 504
10.4 Other Isotopes 506
10.5 Characterization of Chlorinated Compounds 510
10.6 Biodegradation 512
10.7 Combining Isotope Methods with Other Methods 518
References 524
11 FORENSIC APPLICATIONS OF CONTAMINANT TRANSPORT MODELS IN THE SUBSURFACE 540
11.1 Introduction 541
11.2 Contaminant Chemistry 541
11.2.1 Henry’s Law Constant (KH) 541
11.2.2 Liquid Density 542
11.2.3 Viscosity 542
11.2.4 Vapor Pressure and Density 544
11.2.5 Solubility and Nonaqueous Phase Liquids (NAPLs) 544
11.3 Processes Affecting Contaminant Chemistry 547
11.3.1 Hydrolysis 547
11.3.2 Sorption and Retardation 547
11.3.3 Biodegradation 548
11.4 Application of Forensic Models 549
11.4.1 Fluid Transport through a Paved Surface and Compacted Soil 549
11.4.2 Vapor Transport through a Paved Surface 550
11.4.3 Liquid Transport through a Paved Surface 553
11.4.4 Fluid Transport through Soil 556
11.4.4.1 Vapor Transport 556
11.4.4.2 Liquid Transport 557
11.4.4.3 SESOIL 558
11.4.4.4 VLEACH 559
11.4.5 Contaminant Transport Models in Soil 560
11.5 Contaminant Transport Models for Groundwater 563
11.5.1 Inverse Models 565
11.6 Conclusions 585
References 585
12 FORENSIC AIR DISPERSION MODELING AND ANALYSIS 604
12.1 Introduction 605
12.2 Deposition Processes 607
12.3 Estimating Soil Concentrations 608
12.3.1 Source Emission Parameters 608
12.3.2 The Influence of Meteorology and Terrain 609
12.3.2.1 Sources of Meteorological Data 613
12.3.2.2 The Influence of Nearby Terrain and Water Bodies 614
12.3.2.3 Sources of Terrain Elevation and Surface Characteristics Data 615
12.3.3 Plume Rise 615
12.3.4 Atmospheric Dispersion Modeling 616
12.3.4.1 The Gaussian Plume Equation 617
12.3.4.2 Gaussian Plume-based Models 621
12.3.4.3 Numerical Simulation Models 623
12.3.5 Determining Soil Concentrations 624
12.3.6 Soil Contamination Patterns 624
12.3.7 Concentration Ratios 625
12.3.8 Case Study 626
12.4 Redistribution Subsequent to Deposition 629
12.4.1 Effect of Soil Permeability 629
12.4.2 Drip Line Enhancement 629
12.4.3 Sediment Enrichment 630
12.4.4 Resuspension 631
12.5 Accidental Releases of Hazardous Substances 631
12.5.1 Heavy or Dense Gases 632
12.5.2 Estimation of Release Rates 633
12.6 Summary 634
Acknowledgment 635
References 635
13 ENVIRONMENTAL FORENSIC MICROSCOPY 638
13.1 Introduction 638
13.2 Sampling and Analysis Equipment 639
13.2.1 Air Sampling 639
13.2.2 Surface Dust Sampling 640
13.2.2.1 Microscopy Equipment 641
13.3 Determining the Nature of Contaminants 642
13.3.1 Particle Analysis 642
13.3.2 Product Identification by Microscopy 643
13.3.2.1 Sampling 643
13.3.2.2 Analysis 644
13.4 Measuring the Extent of a Specific Contaminant 646
13.4.1 Asbestos 646
13.4.1.1 Vermiculite Analysis 646
13.4.2 Nonasbestos Fibers 647
13.4.2.1 ISO Method 14966 647
13.4.2.2 Glass Fibers 647
13.4.2.3 Ceramic Whiskers 647
13.4.3 Nonfibrous Particulate 649
13.5 Case Studies - Examples of Environmental Forensic Microscopy Investigations 651
13.5.1 Elevated Lead in a Child 651
13.5.2 A Spot Called Ralph 652
13.5.3 Automobiles with a Sooty Deposition - 1 653
13.5.4 Automobiles with a Sooty Deposition - 2 653
13.5.5 WTC Signature Search 655
References 657
14 APPLICATIONS OF LASER ABLATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ( LA- ICP- MS) IN ENVIRONMENTAL FORENSIC STUDIES 664
14.1 Introduction 664
14.2 Magnetic Sector ICP-MS 666
14.3 Laser Ablation 668
14.3.1 Operation of Laser Ablation 668
14.3.2 Sampling Strategy 670
14.3.3 Rastering Analysis 673
14.3.4 Calibration Strategies for Quantitative Analysis 676
14.4 Applications of Laser Ablation ICPMS in Environmental Studies 677
14.4.1 Dendrochemical Studies 678
14.4.2 Fingerprinting the Source of Lead in the Environment 679
14.4.3 Base Paint 680
14.4.4 Lead in Contaminated Soil 682
14.5 Environmental Impacts to Metal Exposure in Tissue 684
14.6 Environmental Formation of Diamonds 687
14.7 Summary 689
References 689
15 EMERGING FORENSIC TECHNIQUES 698
15.1 Introduction to Emerging Technologies 699
15.2 Dendroecology 699
15.2.1 Introduction 699
15.2.2 Methodology 701
15.2.2.1 Sampling Considerations 702
15.2.2.2 Sample Preparation 702
15.2.2.3 Ring-Width Measurement 703
15.2.2.4 Chemical Measurement of Tree Rings 707
15.2.2.5 Chemical Microanalysis 707
15.2.2.6 Isotopic and Organic Compound Analyses of Tree Rings 708
15.2.2.7 Calibration 709
15.2.3 Interpretation of Tree Ring Data 709
15.2.4 Applications of Dendroecology to Site Assessment 710
15.2.5 Applications of Dendroecology in Environmental Forensic Investigations 711
15.2.6 Conclusions 712
15.3 Use of Atmospheric Contaminants for Age-Dating Contaminants in Groundwater 713
15.3.1 Introduction 713
15.3.2 Use of Tritium for Contaminant Age-Dating 714
15.3.3 Use of Chlorofluorocarbons (CFCs) for Age-Dating 718
15.3.4 Analytical Methodology 721
15.3.5 Limitations and Considerations 721
15.3.6 Conclusions 722
15.4 DNA Fingerprinting/Microbiological Techniques 722
15.4.1 Introduction 722
15.4.2 DNA (Deoxyribonucleic Acid) 723
15.4.3 Protein Synthesis and RNA (Ribonucleic Acid) 724
15.4.4 PCR (Polymerase Chain Reaction) 724
15.4.5 DNA Fingerprinting - Principles and Forensic Applications 726
15.4.5.1 Principles 726
15.4.5.2 Forensic Applications 727
15.5 Summary 743
References 743
INDEX 760

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Befunderhebung, Rekonstruktion, Begutachtung

von Burkhard Madea

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
149,99
rechtliche, klinische und ethische Aspekte

von Birgit Völlm; Boris Schiffer

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
79,99