Progress in Low Temperature Physics -

Progress in Low Temperature Physics (eBook)

Quantum Turbulence

Makoto Tsubota (Herausgeber)

eBook Download: PDF | EPUB
2008 | 1. Auflage
432 Seiten
Elsevier Science (Verlag)
978-0-08-091504-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
290,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume presents seven review articles on the recent developments on quantum turbulence. Turbulence has been a great mystery in natural science and technology for more than 500 years since the time of Leonardo da Vinci. Recently turbulence in quantum systems at low temperatures has developed into a new research field. Quantum turbulence is comprised of quantized vortices, realized in superfluid helium and quantum gases of cold atoms. Some of the important topics include energy spectra, vibrating structures, and visualization techniques. The understanding of these remarkable systems can have an impact on the general field of turbulence and will be of broad interest to scientists and students in low temperature physics, hydrodynamics and engineering.

- Key subjects covered: Energy spectra in quantum turbulence, Turbulent dynamics in rotating helium superfluids: a comparison of 3He-B and 4He-II,
Quantum turbulence in superfluid 3He at very low temperatures, The use of vibrating structures in the study of quantum turbulence, Visualization of quantum turbulence, Capillary turbulence on the surface of quantum fluids, Quantized vortices in atomic Bose-Einstein condensates
- Crucial information for all experimenters in low temperature physics
Progress in Low Temperature Physics: Quantum Turbulence presents seven review articles on the recent developments on quantum turbulence. Turbulence has been a great mystery in natural science and technology for more than 500 years since the time of Leonardo da Vinci. Recently turbulence in quantum systems at low temperatures has developed into a new research field. Quantum turbulence is comprised of quantized vortices, realized in superfluid helium and quantum gases of cold atoms. Some of the important topics include energy spectra, vibrating structures, and visualization techniques. The understanding of these remarkable systems can have an impact on the general field of turbulence and will be of broad interest to scientists and students in low temperature physics, hydrodynamics and engineering. Key subjects covered: Energy spectra in quantum turbulence, Turbulent dynamics in rotating helium superfluids: a comparison of 3He-B and 4He-II, Quantum turbulence in superfluid 3He at very low temperatures, The use of vibrating structures in the study of quantum turbulence, Visualization of quantum turbulence, Capillary turbulence on the surface of quantum fluids, Quantized vortices in atomic Bose-Einstein condensates Crucial information for all experimenters in low temperature physics

Front Cover 1
Progress in Low Temperature Physics: Quantum Turbulence 4
Copyright Page 5
Contents 10
Preface 6
Contents of Previous Volumes 14
Chapter 1. Energy Spectra of Quantum Turbulence 20
1 Introduction 21
2 Experimental Study of the Energy Spectrum 28
3 Numerical Analysis of the Dynamics of Quantised Vortices 31
4 Possible Dissipation Mechanism at Very Low Temperatures 35
5 Energy Spectrum at Zero Temperature 38
6 The Kelvin-Wave Cascade 49
7 Classical–Quantum Crossover 55
8 Summary and Discussions 57
Appendix A 59
Acknowledgements 60
References 60
Chapter 2. Turbulent Dynamics in Rotating Helium Superfluids 64
1 Introduction 65
2 Dynamic Instability–Precursor to Turbulence 69
3 Propagating Vortex Front in Rotating Flow 92
4 Decay of Homogeneous Turbulence in Superfluid 4He 131
5 Summary 160
Acknowledgements 160
References 161
Chapter 3. Quantum Turbulence in Superfluid 3He at Very Low Temperatures 166
1 Quantum Turbulence 167
2 Detection of Quantum Vorticity by the Quasiparticle Gas 168
3 Early Vibrating Wire Measurements 176
4 Spatial Distribution of Turbulence Produced From a Vibrating Wire Resonator in 3He-B 181
5 Quasiparticle Beam Experiments Using a Black-body Radiator 182
6 Particle Absorption, Detection and Vortex Creation in a Black-body Radiator 186
7 Nonmechanical Generation of Vorticity by the Kibble-Zurek Mechanism During a Rapid Phase Transition 188
8 Direct Measurements of Andreev Reflection from Vortices 192
9 Measurement of the Vortex Line Density 194
10 Vibrating Grid Experiments 196
11 The Detection of Grid Turbulence 200
12 Vortex Ring Production 202
13 Thermal Decay of Vortex Rings 205
14 The Transition to Turbulence 206
15 Evolution of Quantum Turbulence 207
16 Decay of 3He Quantum Turbulence at Low Temperatures 207
17 Summary 211
References 212
Chapter 4. The Use of Vibrating Structures in the Study of Quantum Turbulence 214
1 Introduction 215
2 Experimental Techniques 220
3 Steady Classical Flow Past Various Structures 222
4 Oscillatory Flow of a Classical Fluid Past Various Structures 226
5 Experiments on Oscillating Structures in Superfluids 234
6 Discussion: Superfluid 4He 246
7 Discussion: Superfluid 3He 260
8 Summary and Conclusions 263
Acknowledgements 263
References 263
Chapter 5. Visualisation of Quantum Turbulence 266
1 Introduction 267
2 Turbulent Helium II 271
3 Dynamics of Tracer Particles 275
4 Particle Visualisation Techniques 289
5 Particle Seeding Techniques for Helium II 291
6 Recent Helium II Flow Visualisation Experiments 298
7 Summary and Outlook 318
Acknowledgements 320
References 320
Chapter 6. Capillary Turbulence on the Surfaces of Quantum Fluids 324
1 Introduction 325
2 Experimental Procedure 334
3 Experimental Results 338
4 Theoretical Consideration of the Decay of Capillary Turbulence 353
5 Conclusion 366
Acknowledgements 367
References 367
Chapter 7. Quantised Vortices in Atomic Bose–Einsten Condensates 370
1 Introduction 371
2 Introduction to UltraCold Atomic Gas BECs 373
3 Vortex Formation in Atomic BECs 380
4 A Single Vortex in an Atomic BEC 392
5 A Lattice of Quantised Vortices in an Atomic BEC 399
6 Other Topics and Future Studies 410
7 Conclusion 415
Acknowledgements 416
References 416
Author Index 424
Subject Index 430

Chapter 2

Turbulent Dynamics in Rotating Helium Superfluids


V.B. Eltsov*; R. de Graaf*; R. Hänninen*; M. Krusius*; R.E. Solntsev*; V.S. L’vov; A.I. Golov; P.M. Walmsley    * Low Temperature Laboratory, Helsinki University of Technology, P.O.Box 5100, FI-02015-TKK, Finland
† Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
‡ School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

Abstract


New techniques, both for generating and detecting turbulence in the helium superfluids 3He-B and 4He, have recently given insight in how turbulence is started, what the dissipation mechanisms are, and how turbulence decays when it appears as a transient state or when externally applied turbulent pumping is switched off. Important simplifications are obtained by using 3He-B as working fluid, where the highly viscous normal component is practically always in a state of laminar flow, or by cooling 4He to low temperatures where the normal fraction becomes vanishingly small. We describe recent studies from the low temperature regime, where mutual friction becomes small or practically vanishes. This allows us to elucidate the mechanisms at work in quantum turbulence on approaching the zero temperature limit.

1 INTRODUCTION


The transition to turbulence is the most well known example of all hydrodynamic transitions. It has been marveled for centuries since dramatic demonstrations can be seen everywhere where a sudden change in the flow occurs, owing to a constriction in the flow geometry, for instance. For 50 years, it has been known that turbulence also exists in superflu-ids (Vinen and Donnelly, 2007), although by its very nature a superfluid should be a dissipation-free system. In many situations, it is found on the macroscopic level that superfluid vortex dynamics mimics the responses of viscous hydrodynamics. This is one of the reasons why it has been thought that superfluid turbulence might provide a shortcut to better understanding of turbulence in general. From the developments over the past 50 years we see that this has not become the case, superfluid turbulence is a complex phenomenon where experiments have often been clouded by other issues, especially by vortex formation and vortex pinning. Nevertheless, the topic is fascinating in its own right: when the flow velocity is increased, the inherently dissipation-free superfluid is observed to become dissipative and eventually turbulent. This is particularly intriguing in the zero temperature limit where the density of thermal excitations approaches zero and vortex motion becomes undamped down to very short wave lengths (of the order of the vortex core diameter).

There are two isotropic helium superfluids in which turbulence has been studied, namely the B phase of superfluid 3He (3He-B) and superfluid 4He (4He II). In the anisotropic A phase of superfluid 3He (3He-A), dissipation is so large that conventional superfluid turbulence is not expected at the now accessible temperatures above 0.1Tc (Finne et al., 2003). Instead rapid dynamics and large flow velocities promote in 3He-A a transition in the topology and structure of the axially anisotropic superfluid order parameter field, a transition from linear line-like vortices to planar sheet-like vortices (Eltsov et al., 2002). Turbulence has also been studied in laser-cooled Bose-Einstein condensed cold atom clouds although so far only theoretically (Kobayashi and Tsubota, 2008; Parker and Adams, 2005), but it is expected that experiments will soon follow. Here, we are reviewing recent work on turbulence in rotating flow in both 3He-B and 4He II, emphasising similarities in their macroscopic dynamics.

A number of developments have shed new light on superfluid turbulence. Much of this progress has been techniques driven in the sense that novel methods have been required, to make further advances in a field as complex as turbulence, where the available techniques both for generating and detecting the phenomenon are not ideal. Three developments will be discussed in this review, namely (i) the use of superfluid 3He for studies in turbulence, which has made it possible to examine the influence of a different set of superfluid properties in addition to those of superfluid 4He, (ii) the study of superfluid 4He in the zero temperature limit where the often present turbulence of the normal component does not complicate the analysis and (iii) the use of better numerical calculations for illustration and analysis.

From the physics point of view, three major advances can be listed to emerge: in superfluid 3He, one can study the transition to turbulence as a function of the dissipation in vortex motion (Eltsov et al., 2006a), known as mutual friction. The dissipation arises from the interaction of thermal excitations with the superfluid vortex when the vortex moves with respect to the normal component. Inclassical viscous flow, such a transition to turbulence would conceptually correspond to one as a function of viscosity. This is a new aspect, for which we have to thank the 3He-B Fermi superfluid where the easily accessible range of variation in mutual friction dissipation is much wider than in the more conventional 4He II Bose superfluid. We are going to make use of this feature in Section 2 where we examine the onset of superfluid turbulence as a function of mutual friction dissipation (Finne et al., 2006a).

Second, in Section 3, we characterise the total turbulent dissipation in superfluid 3He as a function of temperature, extracted from measurements of the propagation velocity of a turbulent vortex front (Eltsov et al., 2007). A particular simplification in this context is the high value of viscosity of the 3He normal component, which means that in practice the normal fraction always remains in a state of laminar flow.

Finally, our third main topic in Section 4 are the results from recent ion transmission measurements in superfluid 4He (Walmsley et al., 2007a; Walmsley and Golov, 2008a), where the decay of turbulence is recorded from 1.6K to 0.08K.Here turbulent dissipation can be examined in the true zero temperature limit with no normal component. As a result we now know that turbulence and dissipation continue to exist at the very lowest temperatures. Although the dissipation mechanisms of 4He or 3He-B in the T → 0 limit are not yet firmly established (Kozik and Svistunov, 2005b; Vinen, 2000, 2001), it is anticipated that these questions will be resolved in the near future (Kozik and Svistunov, 2008b; Vinen, 2006).

Phrased differently, our three studies address the questions (i) how turbulence starts from a seed vortex which is placed in applied vortexfree flow in the turbulent temperature regime (Section 2), (ii) how vortices expand into a region of vortex-free flow (Section 3) and (iii) how the vorticity decays when the external pumping is switched off (Section 4). The common feature of these three studies is the use of uniformly rotating flow for creating turbulence and for calibrating the detection of vorticity. Turbulence can be created in a superfluid in many different ways, but a steady state of constant rotation does generally not support turbulence. Nevertheless, at present rotation is the most practical means of applying flow in a controlled manner in the millikelvin temperature range. In this review, we describe a few ways to study turbulence in a rotating refrigerator. Superfluid hydrodynamics supports different kinds of flow even in the zero temperature limit so that turbulent losses can vary greatly both in form and in magnitude, but generally speaking, the relative importance of turbulent losses tends to increase with decreasing temperature. Two opposite extremes will be examined: highly polarised flow of superfluid 3He-B when a vortex front propagates along a rotating cylinder of circular cross-section (Section 3), and the decay of a nearly homogeneous isotropic vortex tangle in superfluid 4He (Section 4), created by suddenly stopping the rotation of a container with square cross-section.

Turbulent flow in superfluid 3He-B and 4He is generally described by the same two-fluid hydrodynamics of an inviscid superfluid component with singly-quantised vortex lines and a viscous normal component. The two components interact via mutual friction. There are generic properties of turbulence that are expected to be common for both superfluids. However, there are also interesting differences which extend the range of the different dynamic phenomena which can be studied in the He superfluids:

 In typical experiments with 3He-B, unlike with 4He, the mutual friction parameter α can be both greater and smaller than unity (Figure 1) – this allows the study of the critical limit for the onset of turbulence at α ∼ 1 (Section 2).

Figure 1 Mutual friction parameter ζ = (1 – α’)/ as a function of temperature. In superfluid dynamics, this parameter, composed of the dissipative mutual friction α(T) and the reactive mutual friction...

Erscheint lt. Verlag 5.11.2008
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik
ISBN-10 0-08-091504-3 / 0080915043
ISBN-13 978-0-08-091504-3 / 9780080915043
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Fundamentals and Methods

von Thomas Fauster; Lutz Hammer; Klaus Heinz …

eBook Download (2020)
De Gruyter Oldenbourg (Verlag)
49,95
Concepts, Phenomena, and Applications

von Wim van Saarloos; Vincenzo Vitelli; Zorana Zeravcic

eBook Download (2023)
Princeton University Press (Verlag)
94,99