Deep Geological Disposal of Radioactive Waste -

Deep Geological Disposal of Radioactive Waste (eBook)

eBook Download: PDF
2011 | 1. Auflage
300 Seiten
Elsevier Science (Verlag)
978-0-08-046888-4 (ISBN)
Systemvoraussetzungen
149,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a critical review of designing, siting, constructing and demonstrating the safety and environmental impact of deep repositories for radioactive wastes. It is structured to provide a broad perspective of this multi-faceted, multi-disciplinary topic: providing enough detail for a non-specialist to understand the fundamental principles involved and with extensive references to sources of more detailed information.

Emphasis is very much on deep geological disposal - at least some tens of metres below land surface and, in many cases, many hundred of metres deep. Additionally, only radioactive wastes are considered directly - even though such wastes often contain also significant chemotoxic or otherwise hazardous components. Many of the principles involved are generally applicable to other repository options (e.g. near-surface or on-surface disposal) and, indeed, to other types of hazardous waste.

* Presents a current critical review in designing, siting, constructing and demonsrating the safety and environmental impact of deep repositories for radwaste
* Addresses the fundamental principles of radioactive waste with up-to-date examples and real-world case studies
* Written for a multi-disciplinary audience, with an appropriate level of detail to allow a non-specialist to understand
Deep Geological Disposal of Radioactive Waste presents a critical review of designing, siting, constructing and demonstrating the safety and environmental impact of deep repositories for radioactive wastes. It is structured to provide a broad perspective of this multi-faceted, multi-disciplinary topic: providing enough detail for a non-specialist to understand the fundamental principles involved and with extensive references to sources of more detailed information. Emphasis is very much on "e;deep? geological disposal - at least some tens of metres below land surface and, in many cases, many hundred of metres deep. Additionally, only radioactive wastes are considered directly - even though such wastes often contain also significant chemotoxic or otherwise hazardous components. Many of the principles involved are generally applicable to other repository options (e.g. near-surface or on-surface disposal) and, indeed, to other types of hazardous waste. Presents a current critical review in designing, siting, constructing and demonsrating the safety and environmental impact of deep repositories for radwaste Addresses the fundamental principles of radioactive waste with up-to-date examples and real-world case studies Written for a multi-disciplinary audience, with an appropriate level of detail to allow a non-specialist to understand

Cover 1
Copyright Page 5
Table of Contents 8
Preface 6
Acronyms 14
Chapter 1 Introduction 20
1.1. Background and objectives 20
1.2. Content, format and presentation 22
1.3. Radioactive waste management in context 25
1.4. Reference 26
Chapter 2 Waste sources and classification 27
2.1. Introduction 27
2.2. Radioactive waste 27
2.3. Waste classification 28
2.4. Origins of radioactive waste 29
2.4.1. Nuclear fuel cycle 30
2.4.1.1. Mining 31
2.4.1.2. Fuel production 31
2.4.1.3. Reactor operation 31
2.4.1.4. Reprocessing 36
2.4.1.5. Reactor decommissioning 37
2.4.2. Medicine, industry and research 40
2.4.2.1. Medicine 40
2.4.2.2. Industry 40
2.4.2.3. Research 41
2.4.3. Military wastes 42
2.5. Conditioning of radioactive wastes 42
2.5.1. Treatment 43
2.5.1.1. Compaction 43
2.5.1.2. Incineration 43
2.5.2. Conditioning 44
2.5.2.1. Cementation 44
2.5.2.2. Bituminisation 44
2.5.2.3. Resin 44
2.5.2.4. Vitrification 44
2.5.2.5. Spent fuel 45
2.5.3. Process qualification/product quality 45
2.6. Volumes of waste 46
2.7. Inventories 47
2.7.1. Inventory types 47
2.7.2. Types of data recorded 47
2.7.2.1. Radiological data 48
2.7.2.2. Chemical data 50
2.7.2.3. Physical data 50
2.7.3. Secondary data 51
2.7.4. Radionuclides occurring in the nuclear fuel cycle 51
2.7.5. Simplifying the number of waste types 53
2.7.5.1. Radionuclide inventory priorities 54
2.7.5.2. Material priorities 54
2.7.6. Inventory evolution 55
2.7.6.1. Assumptions 55
2.7.6.2. Errors 56
2.7.6.3. Uncertainties 57
2.8. Conclusions 57
2.9. Acknowledgements 57
2.10. References 58
Chapter 3 Development of geological disposal concepts 60
3.1. Introduction 60
3.2. Historical evolution of geological disposal concepts 60
3.3. Geological disposal 64
3.3.1. Definitions and comparison with near-surface disposal 64
3.3.2. Development of geological disposal concepts 66
3.3.3. Roles of the geosphere in disposal options 72
3.3.3.1. Physical stability 73
3.3.3.2. Hydrogeology 74
3.3.3.3. Geochemistry 75
3.3.3.4. Overview 76
3.4. Alternatives to geological disposal 76
3.4.1. Introduction 76
3.4.2. Politically blocked options: sub-seabed and Antarctic icecap disposal 77
3.4.2.1. Sea dumping and sub-seabed disposal 77
3.4.2.2. Antarctic icesheet disposal 78
3.4.3. Technically impractical options partitioning and transmutation, space disposal and icesheet disposal
3.4.3.1. Partitioning and Transmutation 79
3.4.3.2. Space disposal 80
3.4.3.3. Icesheets and permafrost 81
3.4.4. Non-options long-term surface storage
3.5. Alternatives to conventional repositories 83
3.5.1. Introduction 83
3.5.2. Alternative geological disposal concepts 84
3.5.2.1. Utilising existing underground facilities 84
3.5.2.2. Extended storage options (CARE) 85
3.5.2.3. Injection into deep aquifers and caverns 86
3.5.2.4. Deep boreholes 86
3.5.2.5. Rock melting 87
3.5.3. The international option: technical aspects 89
3.5.4. Alternative concepts: fitting the management option to future boundary conditions 89
3.6. Conclusions 91
3.7. References 91
Chapter 4 Site selection and characterisation 96
4.1. Introduction 96
4.1.1. Prescriptive/geologically led 98
4.1.2. Sophisticated/advocacy led 98
4.1.3. Pragmatic/technically led 101
4.1.4. Centralised/geologically led 102
4.1.5. Conclusions to be drawn 103
4.1.6. Lessons to be learned 104
4.2. Site characterisation 106
4.2.1. Can we define the natural environment sufficiently thoroughly? 107
4.2.2. Sedimentary environments 107
4.2.2.1. Hydrogeology 115
4.2.2.2. The regional hydrogeological model 116
4.2.2.3. More local hydrogeological model(s) 118
4.2.3. Crystalline rock environments 120
4.2.3.1. Lithology and structure 120
4.2.3.2. Hydrogeology 125
4.2.3.3. Hydrogeochemistry 125
4.2.3.4. Any geological environment 127
4.3. References 128
Chapter 5 Repository design 131
5.1. Introduction: general framework of the design process 131
5.2. Identification of design requirements/constraints 134
5.3. Concept development 136
5.3.1. Major components of the disposal system and safety functions 136
5.3.2. A structured approach for concept development 139
5.4. Detailed design/specifications of subsystems 142
5.4.1. Near-field processes and design issues 143
5.4.2. Design approach and methodologies 146
5.5. Design confirmation and demonstration 150
5.5.1. Interaction with PA/SA 150
5.5.2. Demonstration and QA 152
5.5.3. Repository management 153
5.6. Future perspectives 156
5.7. References 160
Chapter 6 Assessment of the safety and performance of a radioactive waste repository 163
6.1. Introduction 163
6.2. The role of SA and the safety case in decision-making 164
6.3. SA tasks 167
6.3.1. System description 168
6.3.2. Identification of scenarios and cases for analysis 169
6.3.3. Consequence analysis 174
6.4. Timescales for evaluation 177
6.5. Constructing and presenting a safety case 179
6.6. Acknowledgements 186
6.7. References 186
Chapter 7 Repository implementation 188
7.1. Legal and regulatory framework organisational structures
7.2. Waste management strategies 191
7.2.1. The need for a clear policy and strategy 191
7.2.2. Timetables vary widely 192
7.3. Activities in development of a geological repository 192
7.3.1. Concept development 193
7.3.2. Siting 194
7.3.3. Repository design 194
7.3.4. Licensing 195
7.3.5. Construction 195
7.3.6. Operation 196
7.3.7. Monitoring 196
7.3.8. Research and development 198
7.4. The staging process 198
7.4.1. Attributes of adaptive staging 199
7.4.2. The decision-making process 200
7.5. Status of geological disposal programmes 201
7.5.1. Overview 201
7.5.2. Status of geological disposal projects in selected countries 202
7.5.3. International repositories 205
7.6. Costs and financing 206
7.6.1. Cost estimates 206
7.6.2. Financing 208
7.7. Conclusions 210
7.8. Acknowledgements 211
7.9. References 211
Chapter 8 Research and development infrastructure 213
8.1. Introduction: Management of research and development 213
8.1.1. Drivers for research and development 213
8.1.2. Organisation of R& D
8.2. R& D in specialised (nuclear) facilities
8.2.1. Introduction 215
8.2.2. Inventory 216
8.2.3. Release of radionuclides from waste forms 218
8.2.3.1. Solubility and sorption 218
8.2.3.2. Waste form dissolution 218
8.2.3.3. Colloids 219
8.2.3.4. Organic degradation products 219
8.2.3.5. Gas generation 220
8.3. Conventional R& D
8.3.1. Engineered barriers 221
8.3.1.1. Corrosion 221
8.3.1.2. Buffer and backfill materials 222
8.3.1.3. Container fabrication 223
8.3.2. Natural barriers 224
8.3.2.1. Geochemistry and groundwater flow 224
8.3.2.2. Gas transport and two-phase flow 225
8.3.3. Biosphere 226
8.3.3.1. Radionuclide concentration and dispersion in the biosphere 227
8.3.3.2. Climate change 227
8.3.3.3. Landscape change 227
8.4. Underground rock laboratories 228
8.4.1. URLs in sediments 231
8.5. Nature’s laboratories: studies of the natural environment 233
8.5.1. General 233
8.5.2. Corrosion 234
8.5.3. Cement 235
8.5.4. Clay materials 236
8.5.5. Degradation of organic materials 237
8.5.6. Glass corrosion 237
8.5.7. Radionuclide migration 238
8.6. Model and database development 239
8.7. Conclusions 240
8.8. References 241
Chapter 9 Building confidence in the safe disposal of radioactive waste 246
9.1. Introduction – why build confidence? 246
9.2. Growing nuclear concerns 247
9.3. The unholy alliance of radiation and waste – radioactive waste 247
9.4. Communication systems in waste management programmes 249
9.4.1. The Swiss programme 249
9.4.2. The Japanese programme 255
9.4.3. Examples of communication styles in other countries 258
9.4.3.1. Finland 258
9.4.3.2. Sweden 260
9.4.3.3. France 261
9.4.3.4. United Kingdom 263
9.4.3.5. Comparisons between communication styles in Finland, France, Sweden and the United Kingdom 264
9.5. Lessons for the future 265
9.6. What is the way forward? 266
9.7. Acknowledgements 267
9.8. References 267
Chapter 10 A look to the future 269
10.1. Introduction 269
10.2. Current trends in repository programmes 269
10.3. Priorities for future efforts 271
10.3.1. Waste characterisation 271
10.3.2. Operational safety 272
10.3.3. Emplacement technologies 274
10.3.4. Knowledge management 274
10.3.5. Alternative designs and optimisation processes 276
10.3.6. Materials technology 277
10.3.6.1. Novel construction/immobilisation materials: the example of low pH cement 278
10.3.6.2. Long-term testing of novel (and existing) materials 278
10.3.7. Future SA code development 279
10.4. Implications for environmental protection: disposal of other wastes 280
10.5. Conclusions 281
10.6. References 282
Index 284

Erscheint lt. Verlag 29.7.2011
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-046888-8 / 0080468888
ISBN-13 978-0-08-046888-4 / 9780080468884
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 10,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich