Solar Energy Engineering (eBook)
778 Seiten
Elsevier Science (Verlag)
978-0-08-092287-4 (ISBN)
*Written by one of the world's most renowned experts in solar energy
*Covers the hottest new developments in solar technology, such as solar cooling and desalination
*Packed with quick look up tables and schematic diagrams for the most commonly used systems today'
As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalination, photovoltaics, solar thermal power systems, and modeling of solar systems, including the use of artificial intelligence systems in solar energy systems, modeling and performance prediction.*Written by one of the world's most renowned experts in solar energy*Covers the hottest new developments in solar technology, such as solar cooling and desalination*Packed with quick look up tables and schematic diagrams for the most commonly used systems today'
Front Cover 1
Solar Energy Engineering: Processes and Systems 4
Copyright Page 5
Contents 6
Preface 14
Chapter 1 Introduction 18
1.1 General Introduction to Renewable Energy Technologies 18
1.2 Energy Demand and Renewable Energy 20
1.3 Energy-Related Environmental Problems 25
1.3.1 Acid Rain 28
1.3.2 Ozone Layer Depletion 28
1.3.3 Global Climate Change 29
1.3.4 Nuclear Energy 30
1.3.5 Renewable Energy Technologies 32
1.4 State of the Climate in 2005 35
1.4.1 Global Temperature 35
1.4.2 Carbon Dioxide 36
1.4.3 Methane 37
1.4.4 Carbon Monoxide 38
1.4.5 Nitrous Oxide and Sulfur Hexafluoride 38
1.4.6 Halocarbons 39
1.4.7 Sea Level 39
1.5 Brief History of Solar Energy 39
1.5.1 Photovoltaics 43
1.5.2 Solar Desalination 45
1.5.3 Solar Drying 49
1.5.4 Passive Solar Buildings 50
1.6 Other Renewable Energy Systems 50
1.6.1 Wind Energy 50
1.6.2 Biomass 55
1.6.3 Geothermal Energy 58
1.6.4 Hydrogen 58
1.6.5 Ocean Energy 60
Exercise 62
References 63
Chapter 2 Environmental Characteristics 66
2.1 Reckoning of Time 67
2.1.1 Equation of Time 67
2.1.2 Longitude Correction 68
2.2 Solar Angles 69
2.2.1 The Incidence Angle for Moving Surfaces 79
2.2.2 Sun Path Diagrams 85
2.2.3 Shadow Determination 87
2.3 Solar Radiation 89
2.3.1 General 89
2.3.2 Thermal Radiation 90
2.3.3 Transparent Plates 97
2.3.4 Radiation Exchange Between Surfaces 101
2.3.5 Extraterrestrial Solar Radiation 105
2.3.6 Atmospheric Attenuation 108
2.3.7 Terrestrial Irradiation 110
2.3.8 Total Radiation on Tilted Surfaces 114
2.3.9 Solar Radiation Measuring Equipment 121
2.4 The Solar Resource 123
2.4.1 Typical Meteorological Year 123
2.4.2 Typical Meteorological Year, Second Generation 125
Exercises 134
References 136
Chapter 3 Solar Energy Collectors 138
3.1 Stationary Collectors 138
3.1.1 Flat-Plate Collectors (FPCs) 139
3.1.2 Compound Parabolic Collectors (CPCs) 146
3.1.3 Evacuated Tube Collectors (ETCs) 148
3.2 Sun-Tracking Concentrating Collectors 152
3.2.1 Parabolic Trough Collectors (PTCs) 155
3.2.2 Fresnel Collectors 161
3.2.3 Parabolic Dish Reflectors (PDRs) 164
3.2.4 Heliostat Field Collectors (HFCs) 166
3.3 Thermal Analysis of Flat-Plate Collectors 167
3.3.1 Absorbed Solar Radiation 168
3.3.2 Collector Energy Losses 173
3.3.3 Temperature Distribution Between the Tubes and Collector Efficiency Factor 183
3.3.4 Heat Removal Factor, Flow Factor, and Thermal Efficiency 189
3.4 Thermal Analysis of Air Collectors 192
3.5 Practical Considerations for Flat-Plate Collectors 197
3.6 Concentrating Collectors 198
3.6.1 Optical Analysis of a Compound Parabolic Collector 200
3.6.2 Thermal Analysis of Compound Parabolic Collectors 203
3.6.3 Optical Analysis of Parabolic Trough Collectors 208
3.6.4 Thermal Analysis of Parabolic Trough Collectors 216
3.7 Second-Law Analysis 223
3.7.1 Minimum Entropy Generation Rate 225
3.7.2 Optimum Collector Temperature 227
3.7.3 Non-Isothermal Collector 228
Exercises 229
References 231
Chapter 4 Performance of Solar Collectors 236
4.1 Collector Thermal Efficiency 238
4.1.1 Effect of Flow Rate 242
4.1.2 Collectors in Series 243
4.1.3 Standard Requirements 244
4.2 Collector Incidence Angle Modifier 247
4.2.1 Flat-Plate Collectors 247
4.2.2 Concentrating Collectors 248
4.3 Concentrating Collector Acceptance Angle 249
4.4 Collector Time Constant 250
4.5 Dynamic System Test Method 252
4.6 Collector Test Results and Preliminary Collector Selection 253
4.7 Quality Test Methods 256
4.7.1 Internal Pressure Test 257
4.7.2 High-Temperature Resistance Test 257
4.7.3 Exposure Test 258
4.7.4 External Thermal Shock Test 258
4.7.5 Internal Thermal Shock Test 258
4.7.6 Rain Penetration 259
4.7.7 Freezing Test 259
4.7.8 Impact Resistance Test 260
4.8 European Standards 260
4.8.1 Solar Keymark 262
4.9 Data Acquisition Systems 263
4.9.1 Portable Data Loggers 265
Exercises 266
References 267
Chapter 5 Solar Water Heating Systems 268
5.1 Passive Systems 269
5.1.1 Thermosiphon Systems 269
5.1.2 Integrated Collector Storage Systems 277
5.2 Active Systems 280
5.2.1 Direct Circulation Systems 281
5.2.2 Indirect Water Heating Systems 283
5.2.3 Air Water-Heating Systems 285
5.2.4 Heat Pump Systems 286
5.2.5 Pool Heating Systems 287
5.3 Heat Storage Systems 292
5.3.1 Air System Thermal Storage 293
5.3.2 Liquid System Thermal Storage 294
5.3.3 Thermal Analysis of Storage Systems 297
5.4 Module and Array Design 304
5.4.1 Module Design 304
5.4.2 Array Design 305
5.5 Differential Temperature Controller 314
5.5.1 Placement of Sensors 318
5.6 Hot Water Demand 318
5.7 Solar Water Heater Performance Evaluation 321
5.8 Simple System Models 324
5.9 Practical Considerations 325
5.9.1 Pipes, Supports, and Insulation 325
5.9.2 Pumps 326
5.9.3 Valves 326
5.9.4 Instrumentation 328
Exercises 329
References 331
Chapter 6 Solar Space Heating and Cooling 332
6.1 Thermal Load Estimation 332
6.1.1 The Heat Balance Method 333
6.1.2 The Transfer Function Method 335
6.1.3 Heat Extraction Rate and Room Temperature 339
6.1.4 Degree Day Method 340
6.1.5 Building Heat Transfer 342
6.2 Passive Space Heating Design 345
6.2.1 Building Construction: Thermal Mass Effects 345
6.2.2 Building Shape and Orientation 355
6.2.3 Insulation 356
6.2.4 Windows: Sunspaces 356
6.2.5 Overhangs 358
6.2.6 Natural Ventilation 362
6.3 Solar Space Heating and Cooling 364
6.3.1 Space Heating and Service Hot Water 365
6.3.2 Air Systems 367
6.3.3 Water Systems 369
6.3.4 Location of Auxiliary Heater 374
6.3.5 Heat Pump Systems 375
6.4 Solar Cooling 377
6.4.1 Adsorption Units 382
6.4.2 Absorption Units 384
6.5 Solar Cooling with Absorption Refrigeration 398
Exercises 400
References 403
Chapter 7 Industrial Process Heat, Chemistry Applications, and Solar Dryers 408
7.1 Industrial Process Heat: General Design Considerations 408
7.1.1 Solar Industrial Air and Water Systems 412
7.2 Solar Steam Generation Systems 414
7.2.1 Steam Generation Methods 414
7.2.2 Flash Vessel Design 416
7.3 Solar Chemistry Applications 417
7.3.1 Reforming of Fuels 417
7.3.2 Fuel Cells 419
7.3.3 Materials Processing 425
7.3.4 Solar Detoxification 426
7.4 Solar Dryers 427
7.4.1 Active Solar Energy Dryers 428
7.4.2 Passive Solar Energy Dryers 430
7.5 Greenhouses 433
7.5.1 Greenhouse Materials 434
Exercises 435
References 436
Chapter 8 Solar Desalination Systems 438
8.1 Introduction 438
8.1.1 Water and Energy 438
8.1.2 Water Demand and Consumption 439
8.1.3 Desalination and Energy 440
8.2 Desalination Processes 441
8.2.1 Desalination Systems Exergy Analysis 444
8.2.2 Exergy Analysis of Thermal Desalination Systems 449
8.3 Direct Collection Systems 450
8.3.1 Classification of Solar Distillation Systems 451
8.3.2 Performance of Solar Stills 453
8.3.3 General Comments 456
8.4 Indirect Collection Systems 457
8.4.1 The Multi-Stage Flash (MSF) Process 458
8.4.2 The Multiple-Effect Boiling (MEB) Process 461
8.4.3 The Vapor Compression (VC) Process 465
8.4.4 Reverse Osmosis (RO) 467
8.4.5 Electrodialysis (ED) 469
8.5 Review of Renewable Energy Desalination Systems 470
8.5.1 Solar Thermal Energy 470
8.5.2 Solar Ponds 471
8.5.3 Solar Photovoltaic Technology 471
8.5.4 Wind Power 472
8.5.5 Hybrid Solar PV-Wind Power 472
8.5.6 Geothermal Energy 473
8.6 Process Selection 474
Exercises 480
References 480
Chapter 9 Photovoltaic Systems 486
9.1 Semiconductors 487
9.1.1 p-n Junction 489
9.1.2 Photovoltaic Effect 491
9.1.3 PV Cell Characteristics 493
9.2 Photovoltaic Panels 500
9.2.1 PV Arrays 502
9.2.2 Types of PV Technology 503
9.3 Related Equipment 505
9.3.1 Batteries 505
9.3.2 Inverters 506
9.3.3 Charge Controllers 507
9.3.4 Peak-Power Trackers 508
9.4 Applications 508
9.4.1 Direct Coupled PV System 509
9.4.2 Stand-Alone Applications 509
9.4.3 Grid-Connected Systems 510
9.4.4 Hybrid-Connected Systems 510
9.4.5 Types of Applications 511
9.5 Design of PV Systems 512
9.5.1 Electrical Loads 512
9.5.2 Absorbed Solar Radiation 515
9.5.3 Cell Temperature 520
9.5.4 Sizing of PV Systems 522
9.6 Concentrating PV 528
9.7 Hybrid PV/T Systems 529
9.7.1 Hybrid PV/T Applications 532
Exercises 534
References 535
Chapter 10 Solar Thermal Power Systems 538
10.1 Introduction 538
10.2 Parabolic Trough Collector Systems 541
10.2.1 Description of the PTC Power Plants 545
10.2.2 Outlook for the Technology 548
10.3 Power Tower Systems 550
10.3.1 System Characteristics 552
10.4 Dish Systems 554
10.4.1 Dish Collector System Characteristics 555
10.5 Thermal Analysis of Solar Power Plants 556
10.6 Solar Ponds 562
10.6.1 Practical Design Considerations 564
10.6.2 Transmission Estimation 566
10.6.3 Applications 567
Exercises 568
References 568
Chapter 11 Designing and Modeling Solar Energy Systems 570
11.1 f-Chart Method and Program 570
11.1.1 Performance and Design of Liquid-Based Solar Heating Systems 574
11.1.2 Performance and Design of Air-Based Solar Heating Systems 585
11.1.3 Performance and Design of Solar Service Water Systems 591
11.1.4 General Remarks 593
11.1.5 f-Chart Program 594
11.2 Utilizability Method 595
11.2.1 Hourly Utilizability 595
11.2.2 Daily Utilizability 597
11.2.3 Design of Active Systems With the Utilizability Method 602
11.3 The & #934
11.3.1 Storage Tank Losses Correction 615
11.3.2 Heat Exchanger Correction 617
11.4 Unutilizability Method 619
11.4.1 Direct Gain Systems 620
11.4.2 Collector Storage Walls 625
11.4.3 Active Collection with Passive Storage Systems 631
11.5 Modeling and Simulation of Solar Energy Systems 635
11.5.1 TRNSYS Simulation Program 636
11.5.2 WATSUN Simulation Program 641
11.5.3 Polysun Simulation Program 643
11.6 Artificial Intelligence in Solar Energy Systems 644
11.6.1 Artificial Neural Networks 646
11.6.2 Genetic Algorithms 661
11.6.3 Fuzzy Logic 665
11.6.4 Hybrid Systems 673
11.7 Limitations of Simulations 675
Exercises 675
References 678
Chapter 12 Solar Economic Analysis 682
12.1 Life Cycle Analysis 683
12.1.1 Life Cycle Costing 684
12.2 Time Value of Money 688
12.3 Description of the Life Cycle Analysis Method 691
12.3.1 Fuel Cost of Non-Solar Energy System Examples 696
12.3.2 Hot Water System Example 698
12.3.3 Hot Water System Optimization Example 701
12.3.4 Payback Time 703
12.4 The P1, P2 Method 705
12.4.1 Optimization Using P1, P2 Method 709
12.5 Uncertainties in Economic Analysis 713
Assignment 715
Exercises 716
References 718
Appendix 1: Nomenclature 720
Appendix 2: Definitions 728
Appendix 3: Sun Diagrams 734
Appendix 4: Terrestrial Spectral Irradiance 740
Appendix 5: Thermophysical Properties of Materials 744
Appendix 6: Equations for the Curves of Figures 3.34 to 3.36 750
Appendix 7: Meteorological Data 754
Appendix 8: Present Worth Factors 764
Index 772
A 772
B 772
C 772
D 773
E 773
F 773
G 773
H 774
I 774
L 774
M 774
N 775
O 775
P 775
Q 775
R 775
S 776
T 776
U 777
V 777
W 777
Z 777
Erscheint lt. Verlag | 22.7.2009 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-08-092287-2 / 0080922872 |
ISBN-13 | 978-0-08-092287-4 / 9780080922874 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich