Aeronomy of the Earth's Atmosphere and Ionosphere (eBook)

eBook Download: PDF
2011 | 2011
XXI, 480 Seiten
Springer Netherlands (Verlag)
978-94-007-0326-1 (ISBN)

Lese- und Medienproben

Aeronomy of the Earth's Atmosphere and Ionosphere -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is a multi-author treatise on the most outstanding research problems in the field of the aeronomy of the Earth's atmosphere and ionosphere, encompassing the science covered by Division II of the International Association of Geomagnetism and Aeronomy (IAGA). It contains several review articles and detailed papers by leading scientists in the field. The book is organized in five parts: 1) Mesosphere-Lower Thermosphere Dynamics and Chemistry; 2) Vertical Coupling by Upward Propagating Waves; 3) Ionospheric Electrodynamics and Structuring; 4) Thermosphere- Ionosphere Coupling, Dynamics and Trends and 5) Ionosphere-Thermosphere Disturbances and Modeling. The book consolidates the progress achieved in the field in recent years and it serves as a useful reference for graduate students as well as experienced researchers.


This book is a multi-author treatise on the most outstanding research problems in the field of the aeronomy of the Earth's atmosphere and ionosphere, encompassing the science covered by Division II of the International Association of Geomagnetism and Aeronomy (IAGA). It contains several review articles and detailed papers by leading scientists in the field. The book is organized in five parts: 1) Mesosphere-Lower Thermosphere Dynamics and Chemistry; 2) Vertical Coupling by Upward Propagating Waves; 3) Ionospheric Electrodynamics and Structuring; 4) Thermosphere- Ionosphere Coupling, Dynamics and Trends and 5) Ionosphere-Thermosphere Disturbances and Modeling. The book consolidates the progress achieved in the field in recent years and it serves as a useful reference for graduate students as well as experienced researchers.

Foreword by the Series Editor 6
Preface 7
Contents 9
Contributors 13
List of Reviewers 20
Part I Mesosphere-Lower Thermosphere Dynamics and Chemistry 21
1 Chemical–Dynamical Coupling in the Mesosphere and Lower Thermosphere 22
1.1 Introduction 22
1.2 Model Description 23
1.3 Seasonal Variability 24
1.4 SSW Effects on the MLT 28
1.5 Tidal Variability 31
1.6 Summary 35
References 35
2 Atmospheric Tides and Planetary Waves: Recent Progress Based on SABER/TIMED Temperature Measurements (2002–2007) 37
2.1 Introduction 37
2.2 Observations and Method for Data Analysis 40
2.2.1 SABER Temperature Data 40
2.2.2 Method for Extracting Waves from the Saber Temperatures 40
2.3 Atmospheric Tides 42
2.3.1 Migrating Diurnal (DW1) and Semidiurnal (SW2) Tides 42
2.3.1.1 Climatology of DW1 Temperature Tide 42
2.3.1.2 Climatology of SW2 Temperature Tide 45
2.3.1.3 Interannual Variability of DW1 and SW2 Temperature Tides 47
2.3.2 Nonmigrating Temperature Tides 49
2.3.2.1 Nonmigrating Diurnal Tides 50
2.3.2.2 Nonmigrating Semidiurnal Tides 55
2.4 Planetary Waves 56
2.4.1 Stationary Planetary Wave with Zonal Wavenumber 1 (SPW1) 56
2.4.2 5.5-Day Westward and Eastward Propagating Waves with Zonal Wavenumber 1 60
2.4.2.1 Climatology of the ~5-day Rossby (W1) Wave 61
2.4.2.2 Climatology of the ~6-day Kelvin (E1) Wave 61
2.4.2.3 Interannual Variability of the ~5-day Rossby and ~6-day Kelvin Waves 64
2.4.3 11- and 17-Day Westward Propagating Waves with Zonal Wavenumber 1(W1) 66
2.5 Summary 69
References 69
3 Dynamical Coupling Between Different Regions of Equatorial Atmosphere 75
3.1 Introduction 75
3.2 Present Scenario in Equatorial Middle Atmosphere Studies – Indian Perspective 76
3.3 Waves in the Equatorial Region 76
3.3.1 Equatorial Waves 76
3.3.2 Gravity Waves 77
3.3.3 Quasi-biennial Oscillations (QBOs) 77
3.3.4 Semi-annual Oscillations (SAOs) 77
3.4 Coupling Between Troposphere and Stratosphere 77
3.4.1 Forcing by Gravity Waves Toward the Generation of QBO 78
3.4.2 Forcing by Gravity Waves Toward the Generation of SSAO 78
3.5 Coupling Between Troposphere and Mesosphere 79
3.5.1 Forcing by Gravity Waves Toward the Generation of MSAO 79
3.6 Coupling Between Troposphere/Stratosphere and Mesospheric/Lower Thermospheric (MLT) Region 80
3.7 Concluding Remarks 81
References 81
4 Microphysical Properties of Mesospheric Aerosols: An Overview of In Situ-Results from the ECOMA Project 84
4.1 Introduction 84
4.2 The ECOMA Project: Payload Description and Campaigns 85
4.3 Scientific Results 86
4.3.1 MSP Properties During September 2006 86
4.3.2 Ice Particle Charge Densities in PMSE 86
4.3.3 A Three Instrument Consistency Comparison 87
4.3.4 MSP and Ice Particle Properties Under Polar Summer Conditions 89
4.4 Summary 90
References 90
5 SABER Observations of Daytime Atomic Oxygen and Ozone Variability in the Mesosphere 92
5.1 Introduction 92
5.2 SABER Data and Analysis 93
5.3 Mean Concentrations 94
5.4 Impact of the Migrating Diurnal Tide on Daytime Concentrations 96
5.5 Conclusions 98
References 98
6 In Situ Measurements of Small-Scale Structures in Neutrals and Charged Aerosols 100
6.1 Introduction 100
6.2 Measurement Technique 101
6.2.1 Instrumentation 101
6.2.1.1 CONE 101
6.2.1.2 ECOMA-PD 101
6.2.2 Data Analysis 102
6.3 Scientific Results 103
6.3.1 Small-Scale Structures 103
6.3.2 Schmidt Numbers 105
6.4 Conclusions 106
References 106
7 High-Latitude Gravity Wave Measurements in Noctilucent Clouds and Polar Mesospheric Clouds 109
7.1 Introduction 109
7.2 Instrumentation 112
7.3 Observations and Data Analysis 112
7.4 Results 114
7.5 Discussion 116
7.6 Summary 119
References 119
Part II Vertical Coupling by Upward Propagating Waves 122
8 Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling 123
8.1 Introduction 123
8.2 Evidence of Deep, Large-Amplitude GWs in the TI 124
8.3 Validity of Ray Tracing Assumptions in the TI 133
8.3.1 The WKB Approximation 133
8.3.2 Quasi-Linear and Nonlinear Effects 134
8.4 Studies of Large-Scale GW Dynamics in the Thermosphere 135
8.4.1 GW Self-Acceleration Effects 135
8.4.2 GW Breaking and Turbulence Generation in the Lower Thermosphere 138
8.4.2.1 Problem Specification 138
8.4.2.2 Nonlinear GW Evolution 138
8.5 Discussion and Conclusions 139
References 141
9 Neutral Winds and Densities at the Bottomside of the F Layer from Primary and Secondary Gravity Waves from Deep Convection 145
9.1 Introduction 145
9.2 Primary GWs from Convective Overshoot 146
9.3 Thermospheric Body Forces from Primary GW Dissipation 148
9.4 Generated Neutral Mean Winds and Secondary Gravity Waves 148
9.5 Conclusions 151
References 151
10 The Acoustic Gravity Wave Induced Disturbances in the Equatorial Ionosphere 154
10.1 Introduction 154
10.2 Numerical Simulation of Acoustic-Gravity Waves (AGWs) 156
10.2.1 Wave Equation of AGWs 156
10.2.2 Results and Discussion 158
10.2.2.1 One-Dimensional (Altitude) Simulation of AGWs 158
10.2.2.2 Two-Dimensional (Altitude-Longitude) Simulation of AGWs 163
10.2.2.3 Effects of Finite Mean Horizontal Wind Wo = 0 165
10.3 AGW-Collisional Interchange Instability (CII) Coupling 165
10.3.1 Atmosphere-Ionosphere Coupling and Motion in the Equatorial Ionosphere 165
10.3.2 Simultaneous Simulation of AGWs and Plasma Bubble 166
10.3.2.1 Effects of Mean Zonal Wind and of Thermal Source Life-Time 166
10.4 Summary 172
Appendix 1: Governing Nonlinear Wave Equation of AGW 172
Appendix 2: Hydromagnetic Equations in Ionosphere 173
References 173
11 Mesosphere–Ionosphere Coupling Processes Observed in the F Layer Bottom-Side Oscillation 176
11.1 Introduction 176
11.2 Observation 177
11.3 Results 178
11.3.1 Ionospheric F-Layer Bottomside Scattering During the Period of 22--25 September 179
11.3.2 OI 630.0 nm Depletions and OH Gravity Waves 182
11.4 Discussion 183
11.4.1 Evidence on the F layer Bottomside Vertical Oscillation 183
11.4.2 Forward and Reverse Ray Tracing of Gravity Waves 184
11.5 Conclusion 187
References 188
12 A Case Study of Tidal and Planetary Wave Coupling in the Equatorial Atmosphere-Ionosphere System Over India: Preliminary Results 189
12.1 Introduction 189
12.2 Selection of Data 190
12.3 Results 191
12.4 Discussion and Conclusion 196
References 198
Part III Ionospheric Electrodynamics and Structuring 200
13 Electrodynamics of Ionosphere–Thermosphere Coupling 201
13.1 Introduction 201
13.2 Conductivity 202
13.3 Thermospheric Winds 204
13.4 Ionospheric Electric Fields and Currents 205
13.5 Electric Current Effects on Winds 207
13.6 Research Prospects 208
References 209
14 Daytime Vertical ExB Drift Velocities Inferred from Ground-Based Equatorial Magnetometer Observations 212
14.1 Introduction 212
14.2 Ground-Based Magnetometer Techniques 213
14.3 Areas of Research That Have Incorporated the H Technique 215
14.3.1 Prompt Penetration Studies 216
14.3.2 Modeling Studies 216
14.3.3 Emerging Studies 217
14.4 Summary and Future Work 218
References 218
15 Three-Dimensional Modeling of Equatorial Spread F 220
15.1 Introduction 220
15.2 Numerical Model 220
15.3 Results 221
15.3.1 Ion Dynamics 221
15.3.2 Temperature Dynamics 223
15.4 Discussion 226
References 226
16 Coupling Processes in the Equatorial Spread F/Plasma Bubble Irregularity Development 228
16.1 Introduction 228
16.2 The Evening Prereversal Vertical Drift and the ESF 231
16.2.1 The Role of Es Layers 232
16.3 Planetary Wave Effects on PRE and ESF 234
16.4 Thermospheric Meridional/Trans-equatorial Winds and ESF Suppression 235
16.5 Gravity Wave Effects on ESF Development 239
16.6 Disturbance Electric Fields and the ESF 241
16.7 Discussion and Conclusions 242
References 245
17 Influences on the Development of Equatorial Plasma Bubbles: Insights from a Long-Term Optical Dataset 248
17.1 Introduction 248
17.2 Data 249
17.3 Analysis and Results 250
17.4 Discussion 254
17.5 Conclusions 257
References 257
18 A Review of the Recent Advances in the Investigation of Equatorial Spread F and Space Weather Effects over Indian Sector Using Optical and Other Techniques 259
18.1 Introduction 259
18.2 Motivation for the Co-ordinated Optical and Radar Investigations 261
18.3 Experimental Details 261
18.4 Results and Discussion 262
18.5 Summary 274
References 274
19 Radar and Optical Observations of Irregular Midlatitude Sporadic E Layers Beneath MSTIDs 277
19.1 Introduction 277
19.2 Observations 279
19.3 Synthesis 283
19.4 Summary and Analysis 286
References 288
20 Instabilities in the Midlatitude Ionosphere in Terms of E–F Coupling 290
20.1 Introduction 290
20.2 Observations 291
20.3 Theory 292
20.4 Numerical Studies 294
20.5 Summary 296
References 296
21 Statistical Study of Medium-Scale Traveling Ionospheric Disturbances Observed with a GPS Receiver Network in Japan 298
21.1 Introduction 298
21.2 Data and Method of Analysis 299
21.3 Results 300
21.4 Discussion 301
21.4.1 Daytime MSTIDs 302
21.4.2 Nighttime MSTIDs 303
21.4.3 Dawn and Dusk MSTIDs 304
21.5 Summary 304
References 305
Part IV Thermosphere–Ionosphere Coupling, Dynamics and Trends 307
22 New Aspects of the Coupling Between Thermosphere and Ionosphere, with Special regards to CHAMP Mission Results 308
22.1 Introduction 308
22.2 Observation and Data Processing 309
22.2.1 CHAMP Satellite 309
22.2.2 Deriving Thermospheric Mass Density and Wind 309
22.3 Parameterization of Thermospheric Mass Density 310
22.4 Magnetic Forcing of the Thermosphere 313
22.5 The F-Region Dynamo 315
22.6 Mass Density Depletions Accompanying Plasma Bubbles 318
22.7 Conclusions 320
References 320
23 Equatorial Ionization Anomaly: The Role of Thermospheric Winds and the Effects of the Geomagnetic Field Secular Variation 322
23.1 Introduction 322
23.2 Effect of the Vertical Drift on the EIA Development 323
23.3 Effect of the Meridional Wind in the EIA Development 324
23.4 Secular Variation of the Geomagnetic Field and Its Effect on the EIA 327
23.5 Summary 330
References 333
24 Characteristics of Temperature and Density Structures in the Equatorial Thermosphere Simulated by a Whole Atmosphere GCM 334
24.1 Introduction 334
24.2 A Whole Atmosphere GCM 335
24.3 Results 335
24.4 Discussion 339
24.5 Conclusions 340
References 341
25 Longitudinal Variations of the Thermospheric Zonal Wind Induced by Nonmigrating Tides as Observed by CHAMP 343
25.1 Introduction 343
25.2 Deriving the Zonal Wind 345
25.3 Longitudinal Variation of the Equatorial Zonal Wind 345
25.4 The Prominent Wave-4 346
25.5 Nonmigrating Tidal Spectra 347
25.5.1 CHAMP/TIME-GCM Tidal Comparison 349
25.5.2 Troposphere--Thermosphere Coupling by Nonmigrating Tides 350
25.6 Conclusions 350
References 351
26 Causal Link of Longitudinal Plasma Density Structure to Vertical Plasma Drift and Atmospheric Tides – A Review 353
26.1 Introduction 353
26.2 Longitudinal Plasma Density Structure 354
26.3 Causal Link of the Longitudinal Density Structure to E-region Dynamo Electric Field 356
26.4 Connection Between Ionosphere and Atmospheric Tides 358
26.5 Generation of Dynamo Electric Fields by Tidal Winds 361
26.6 Conclusions 363
References 363
27 Longitudinal Structure of the Mid- and Low-Latitude Ionosphere Observed by Space-borne GPS Receivers 366
27.1 Introduction 366
27.2 Atmospheric Tidal Effect to the Equatorial Ionosphere 367
27.2.1 Monthly Variation of the Tidal Effect 368
27.2.2 Diurnal Variation of the Tidal Effect 370
27.3 The Mid-Latitude Summer Nighttime Anomaly (MSNA) 370
27.4 Summary 374
References 376
28 Ionosphere–Thermosphere Coupling in the Low-Latitude Region 378
28.1 Introduction 378
28.2 Data 379
28.3 Results 379
28.4 Discussion 381
References 383
29 A Tutorial Review on Sporadic E Layers 384
29.1 Introduction 384
29.2 Basic Es Theory and Processes 385
29.2.1 Windshear Ion Convergence Mechanisms 385
29.2.2 Ion-Convergence Times 386
29.2.3 Plasma Diffusion 388
29.3 Es Observational Properties and Interpretations 388
29.3.1 The Non-sporadic Nature of Sporadic E 388
29.3.2 Physical Interpretation 391
29.3.3 Non-tidal Es Variability 392
29.3.4 Seasonal Variability 393
29.3.5 Global Es Occurrence and Variability 394
29.4 Summary and Concluding Comments 396
References 397
30 Long-Term Trends in the Upper Atmosphere – Recent Progress 398
30.1 Introduction 398
30.2 What Causes Upper Atmospheric Trends? 399
30.3 Global Scenario of Trends 402
30.4 F2 Region of the Ionosphere 403
30.5 Mesosphere and Lower Thermosphere (MLT) Dynamics 405
30.6 Mesospheric Water Vapour and Related Phenomena 406
30.7 Conclusions 407
References 407
31 Parameters of the Ionospheric F2 Layer as a Source of Information on Trends in Thermospheric Dynamics 410
31.1 Introduction 410
31.2 Variations in the Correlation Coefficient Between foF2(Night) and foF2(Day) 411
31.3 Variations in the foF2(Night)/ foF2(Day) Ratio 411
31.4 Scatter of hmF2 Values 412
31.5 Behavior of foF2 After Sunset 414
31.6 Behavior of hmF2 After Sunset 415
31.7 Discussion 416
31.8 Conclusions 417
References 418
Part V Ionosphere–Thermosphere Disturbances and Modelling 420
32 Storm-Time Response of the Thermosphere–Ionosphere System 421
32.1 Introduction 421
32.2 High Latitude Energy Injection 421
32.3 Auroral Heating and Ionization 423
32.4 Storm Dynamics at High Latitudes 423
32.5 Global Dynamics, Temperature, and Density Response 425
32.6 Neutral Composition Response 427
32.7 Positive and Negative Ionospheric Storms 428
32.8 Structure in the Plasma Response 429
32.9 Storm-Time Electrodynamics 431
32.10 Conclusions 434
References 435
33 Ionosphere Data Assimilation: Problems Associated with Missing Physics 438
33.1 Introduction 438
33.2 Data Assimilation Models 439
33.3 Problems with Missing Physics 439
References 443
34 Penetration of Magnetospheric Electric Fields to the Low Latitude Ionosphere During Storm/Substorms 444
34.1 Convection Electric Field and Global DP2 Currents 444
34.2 Overshielding Electric Field and CEJ 445
34.3 DP2 Currents and CEJ During Substorms 446
34.4 DP2 Currents and CEJ During Geomagnetic Storms 446
34.5 Electric Field Transmission Mechanism 451
34.6 Conclusion 452
References 452
35 Modeling the Storm Time Electrodynamics 455
35.1 Introduction 455
35.2 Coupled Model Descriptions 456
35.2.1 The Coupled RCM--CTIPe Model 456
35.2.2 Model Input Parameters 457
35.3 Results and Discussion 457
35.3.1 Identification of the Two Sources of the Storm Time Electric Fields 457
35.3.2 Nonlinear Interactions Between PP and DD 459
35.3.3 Preconditioning of the Inner Magnetosphere 459
35.3.4 Residual Disturbance Dynamo Effect 461
35.4 Conclusions 462
References 462
36 A Physical Mechanism of Positive Ionospheric Storms 465
36.1 Introduction 465
36.2 Geomagnetic Storm and Data 466
36.2.1 Storm-Time Electric Fields 466
36.2.2 Storm-Time Neutral Winds 466
36.2.3 Neutral Densities 466
36.2.4 Storm-Time Ionospheric Data 468
36.3 Model and Inputs 468
36.4 Model Results 468
36.4.1 Effect of Electric Field 468
36.4.2 Effects of Neutral Wind 468
36.5 Physical Mechanism 470
36.5.1 Local Time Dependence 470
36.5.2 Seasonal Dependence 470
36.6 Verification of Mechanism 471
36.7 Discussion of Physical Mechanism 473
36.8 Conclusions 474
References 474
Index 476

Erscheint lt. Verlag 26.2.2011
Reihe/Serie IAGA Special Sopron Book Series
Mitarbeit Stellvertretende Herausgeber: Archana Bhattacharyya
Zusatzinfo XXI, 480 p. 150 illus., 70 illus. in color.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Geophysik
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik
Schlagworte aeronomy • Atmosphere-ionosphere coupling • Ionosphere • Magnetosphere-ionosphere coupling • Middle atmosphere and thermosphere
ISBN-10 94-007-0326-0 / 9400703260
ISBN-13 978-94-007-0326-1 / 9789400703261
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 31,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Olaf Kühne; Florian Weber; Karsten Berr; Corinna Jenal

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
109,99

von Wolfgang Torge; Jürgen Müller; Roland Pail

eBook Download (2023)
De Gruyter (Verlag)
69,95