Operational Oceanography in the 21st Century -

Operational Oceanography in the 21st Century (eBook)

eBook Download: PDF
2011 | 2011
XV, 745 Seiten
Springer Netherlands (Verlag)
978-94-007-0332-2 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Over the past decade the significant advances in real-time ocean observing systems, ocean modelling, ocean data assimilation and super-computing has seen the development and implementation of operational ocean forecast systems of the global ocean. At the conclusion of the Global Ocean Data Assimilation Experiment (GODAE) in 2008 ocean analysis and forecasting services were being supported by 12 international centres.

This book is about ocean forecasting - a maturing field which remains an active area of research, and includes such topics as ocean predictability, observing system design, high resolution ocean modelling and ocean data assimilation. It presents the introduction to ocean forecasting which provides a foundation for new opportunities in areas of coupled bio-geochemical forecasting and coupled atmosphere-wave-ocean forecasting. The book describes an updated account of research and development to improve forecast systems, determining how best to service the marine user community with forecast information as well as demonstrating impact to their applications. It also discusses operational centres that are now supporting a range of real-time ocean services including online graphical and data products for their user communities and their feedback on the quality of information.

The contents of this book are aimed at early career scientists and professionals with an interest in operational oceanography and related ocean science. There are excellent opportunities for exciting careers in the emerging field of operational oceanography in order to address current and future challenges as well as provide the supporting services to a rapidly growing user community.


Over the past decade the significant advances in real-time ocean observing systems, ocean modelling, ocean data assimilation and super-computing has seen the development and implementation of operational ocean forecast systems of the global ocean. At the conclusion of the Global Ocean Data Assimilation Experiment (GODAE) in 2008 ocean analysis and forecasting services were being supported by 12 international centres.This book is about ocean forecasting - a maturing field which remains an active area of research, and includes such topics as ocean predictability, observing system design, high resolution ocean modelling and ocean data assimilation. It presents the introduction to ocean forecasting which provides a foundation for new opportunities in areas of coupled bio-geochemical forecasting and coupled atmosphere-wave-ocean forecasting. The book describes an updated account of research and development to improve forecast systems, determining how best to service the marine user community with forecast information as well as demonstrating impact to their applications. It also discusses operational centres that are now supporting a range of real-time ocean services including online graphical and data products for their user communities and their feedback on the quality of information.The contents of this book are aimed at early career scientists and professionals with an interest in operational oceanography and related ocean science. There are excellent opportunities for exciting careers in the emerging field of operational oceanography in order to address current and future challenges as well as provide the supporting services to a rapidly growing user community.

Preface 5
List of Lecturers and Students 9
Lecturers 9
Students 10
Contents 12
Part I 15
Introduction 15
Chapter-1 16
Ocean Forecasting in the 21st Century 16
Abstract 16
1.1 Brief History of Oceanography 16
1.2 The Achievements of GODAE (1997–2008) 21
1.3 Key Future Research Priorities in Ocean Forecasting 24
1.3.1 The Challenges for the Next Decade 24
1.3.2 Ocean Modelling 25
1.3.3 Initialisation and Forecasting 27
1.3.4 The Global Ocean Observing System 29
1.3.5 Observing System Design and Adaptive Sampling 30
1.4 Scientific Objectives of GODAE OceanView 31
1.5 Summary and Conclusions 34
References 37
Part II 40
Oceanographic Observing System 40
Chapter-2 41
Satellites and Operational Oceanography 41
Abstract 41
2.1 Introduction 41
2.2 Role of Satellites for Operational Oceanography 42
2.2.1 The Global Ocean Observing System and Operational Oceanography 42
2.2.2 The Unique Contribution of Satellite Observations 42
2.2.3 Main Requirements 43
2.2.4 Role of In-Situ Data 43
2.2.5 Data Processing Issues 44
2.2.6 Use of Satellite Data for Assimilation into Ocean Models 45
2.3 Overview of Satellite Oceanography Techniques 45
2.3.1 Passive/Active Techniques and Choice of Frequencies 45
2.3.2 Satellite Orbits and Measurement Characteristics 46
2.3.3 Radiation Laws and Emissivity 47
2.3.3.1 Radiation from a Blackbody 47
2.3.3.2 Graybodies and Emissivity 48
2.3.3.3 Retrieval of Geophysical Parameters for Microwave Radiometers 48
2.4 Altimetry 48
2.4.1 Overview 48
2.4.2 Measurement Principles 49
2.4.3 Geoid and Repeat-Track Analysis 49
2.4.4 High Level Data Processing Issues and Products 50
2.4.5 Sea Level Measurement Content 51
2.4.6 Operational Oceanography Requirements 52
2.5 Sea Surface Temperature 53
2.5.1 Sea Surface Temperature Measurements and Operational Oceanography 53
2.5.2 Measurement Principles 53
2.5.3 SST Infra-Red and Microwave Sensors 54
2.5.4 Key Developments in SST Data Processing 55
2.5.5 Operational Oceanography Requirements 55
2.5.6 Conclusions 56
2.6 Ocean Colour 57
2.6.1 Ocean Colour Measurements and Operational Oceanography 57
2.6.2 Measurement Principles 57
2.6.3 Processing Issues 59
2.6.4 Operational Oceanography Requirements 59
2.6.5 Conclusions 61
2.7 Other Techniques 61
2.7.1 Synthetic Aperture Radar 61
2.7.2 Sea Ice 62
2.7.3 Satellite Winds 62
2.7.4 A New Challenge: To Estimate Sea Surface Salinity from Space 63
2.8 Concluding Remarks 63
2.9 Useful URLs 64
References 65
Chapter-3 67
In-Situ Ocean Observing System 67
Abstract 67
3.1 Introduction 67
3.2 Elements of Observing System 70
3.2.1 Tide Gauges 70
3.2.2 Voluntary Observing Ships 72
3.2.3 Ships of Opportunity 74
3.2.4 Drifting Buoys 77
3.2.5 Acoustic Tomography 78
3.2.6 Repeat Hydrography and Carbon Inventory 81
3.2.7 Moorings 82
3.2.8 Argo Profiling Floats 85
3.2.9 HF Radar 89
3.2.10 Gliders 90
3.3 Basin Scale Observing System—IndOOS 91
3.3.1 Moorings 92
3.3.2 Argo Profiling Floats 93
3.3.3 SOOP/XBT Lines 94
3.3.4 Drifting Buoys 95
3.3.5 Data Management 95
3.4 Summary 96
References 99
Chapter-4 103
Ocean Data Quality Control 103
Abstract 103
4.1 Introduction 103
4.2 Ocean Observing Systems 104
4.2.1 Ship and Buoy Sea Surface Temperature and Salinity 106
4.2.2 Satellite Sea Surface Temperature 106
4.2.3 Sea Ice Concentration 107
4.2.4 Temperature and Salinity Profiles 107
4.2.5 Altimeter Sea Surface Height 107
4.2.6 Altimeter and Buoy Significant Wave Height 108
4.3 Preliminary Data Sensibility Checks 108
4.3.1 Land/Sea/Fresh Water Test 108
4.3.2 Location/Speed Test 109
4.3.3 Valid Value Range Tests 109
4.3.4 Duplicates 110
4.4 External Data Checks 110
4.4.1 Background Field Check 111
4.4.2 Cross Validation 111
4.4.3 Ship and Buoy Sea Surface Temperature 113
4.4.4 Satellite Sea Surface Temperature 113
4.4.4.1 Residual Cloud Contamination 113
4.4.4.2 Aerosol Contamination 114
4.4.4.3 Diurnal Warming 115
4.4.4.4 Microwave SST 116
4.4.5 Sea Ice Concentration 116
4.4.6 Temperature and Salinity Profiles 117
4.4.6.1 Instrumentation Error Checks 117
4.4.6.2 Static Stability 117
4.4.6.3 Vertical Gradient Checks 118
4.4.6.4 Profile Shape Comparisons 119
4.4.6.5 Gliders 119
4.4.7 Altimeter Sea Surface Height 119
4.4.8 Altimeter Significant Wave Height 120
4.5 Quality Control Decision-Making Algorithms 121
4.5.1 Quality Control System Performance 122
4.6 Internal Data Checks 126
4.7 Adjoint Sensitivities 129
4.8 Summary and Conclusions 130
References 132
Chapter-5 134
Observing System Design and Assessment 134
Abstract 134
5.1 Introduction 134
5.2 Concepts for Observing System Design and Assessment 136
5.3 Methods and Examples 139
5.3.1 Observing System Experiments—OSEs 139
5.3.2 Observing System Simulation Experiments—OSSEs 142
5.3.3 Analysis Self-Sensitivity 145
5.3.4 Ensemble-Based Methods 147
5.3.5 Adjoint-Based Methods 154
5.4 Summary 157
References 159
Part III 163
Atmospheric Forcing and Waves 163
Chapter-6 164
Air-Sea Fluxes of Heat, Freshwater and Momentum 164
Abstract 164
6.1 Introduction 164
6.2 Surface Flux Theory 166
6.2.1 Flux Components and Spatial Variation 166
6.2.2 Turbulent Flux Bulk Formulae 168
6.2.3 Radiative Flux Parameterisations 168
6.2.4 Wind Stress 171
6.2.5 Freshwater Flux 172
6.2.6 Density Flux 172
6.3 Air-Sea Flux Datasets 173
6.3.1 In Situ Observation Based Fields 174
6.3.2 Remotely Sensed fluxes 175
6.3.3 Atmospheric Model Reanalyses 175
6.3.4 Other Flux Products 176
6.4 Methodology for Evaluating Surface Fluxes 178
6.5 Surface Fluxes in the Global Climate System 179
6.5.1 The Implied Ocean Heat Transport and the Closure Problem 179
6.5.2 Climate Change Related Trends in Surface Fluxes 181
6.5.3 Relationship to Major Modes of Atmospheric Variability 182
6.6 Unresolved Issues and Conclusion 185
6.6.1 The Southern Ocean Sampling Problem 185
6.6.2 Estimating Meridional Overturning Circulation (MOC) Variability from Surface Fluxes 187
References 189
Chapter-7 194
Coastal Tide Gauge Observations: Dynamic Processes Present in the Fremantle Record 194
Abstract 194
7.1 Introduction 194
7.1.1 The Study Region 196
7.2 Data 197
7.3 Seiches 197
7.4 Tsunamis 199
7.5 Tides 200
7.6 Coastal-Trapped Waves 203
7.7 Seasonal Changes 206
7.8 Inter-Annual Changes 207
7.9 Decadal Variations Due to Tides 207
7.10 Global Mean Sea Level Processes 208
References 210
Chapter-8 212
Surface Waves 212
Abstract 212
8.1 Introduction 212
8.2 Governing Equations 213
8.3 Dispersion Relation 216
8.3.1 Phase Velocity and Group Velocity 219
8.4 Basic Definitions 220
8.4.1 The Wave Spectrum 221
8.4.2 Significant Wave Height 223
8.5 Operational Wave Modelling 224
8.5.1 Background and Basics 224
8.5.2 Operational Centres 226
8.5.3 Outlook 231
References 232
Chapter-9 234
Tides and Internal Waves on the Continental Shelf 234
Abstract 234
9.1 Introduction 234
9.2 Laboratory Models 235
9.3 Field Scale Observations 238
9.4 Internal Waves and Cyclones 241
References 243
Part IV 245
Modelling 245
Chapter-10 246
Eddying vs. Laminar Ocean Circulation Models and Their Applications 246
Abstract 246
10.1 Introduction 247
10.1.1 Ubiquity of Eddies in the Ocean 247
10.1.2 Ocean Mesoscale Eddies: A Definition 247
10.1.3 Importance of Mesoscale Eddies 250
10.2 Some Resolution Issues in Ocean Models 250
10.2.1 Resolved and Unresolved Scales of Motion 250
10.2.2 Eddying Versus Laminar Ocean Models 252
10.2.3 Parameterisation of Mesoscale Eddies in Laminar Models 254
10.3 Advanced Numerical Schemes and Resolution 256
10.4 Impact of Resolution on Model Solution 257
10.4.1 DRAKKAR Hierarchy of Model Configurations 258
10.4.2 Some Impacts of Resolution Increase 262
10.5 Conclusion 266
10.6.1 Definitions 267
10.6.2 Equations 268
Appendix 267
References 268
Chapter-11 270
Isopycnic and Hybrid Ocean Modeling in the Context of GODAE 270
Abstract 270
11.1 Introduction 270
11.2 Ocean Model Requirements for GODAE 273
11.3 Challenges 274
11.4 On the Use of Potential Density as a Vertical Coordinate 278
11.5 Application: The HYbrid Coordinate Ocean Model (HYCOM) 281
11.5.1 Hybrid Coordinate Generator 283
11.5.2 The HYCOM Ocean Prediction Systems (http://www.hycom.org) 287
11.5.3 Distribution of Global HYCOM Hindcasts and Forecasts 289
11.5.4 Boundary Conditions for Regional and Coastal Models Nested in HYCOM 292
11.5.5 HYCOM Long-Term Development 294
11.6 Outlook 294
References 297
Chapter-12 301
Marine Biogeochemical Modelling and Data Assimilation 301
Abstract 301
12.1 Introduction 301
12.2 Biogeochemical Modelling 302
12.3 Biogeochemical Data Assimilation 308
12.3.1 Parameter Estimation 308
12.3.2 Ocean State Estimation 309
12.4 Challenges of Adding BGC Data Assimilation to GODAE Systems 311
12.4.1 Background 311
12.4.2 Potential Issues and Solutions 312
12.4.3 Pilot BGC Data Assimilation Using BECs 313
12.4.4 Proposed Sequential Data Assimilation for BGC State Estimation 318
12.5 Conclusion 321
References 321
Part V 324
Data Assimilation 324
Chapter-13 325
Introduction to Ocean Data Assimilation 325
Abstract 325
13.1 Introduction 326
13.2 The Purpose of Data Assimilation 327
13.3 Mathematical Formulation 329
13.3.1 Bayes’ Theorem 330
13.3.2 Example 1: Estimation of a Scalar 332
13.3.2.1 Example 2: Estimation of a Vector (Optimal Interpolation) 333
13.3.3 Sequential Filtering Algorithms 337
13.4 Summary: Components of Data Assimilation Systems 338
13.5 Analysis of Data Assimilation Systems 339
13.5.1 Implementation and Solution Algorithms 339
13.5.1.1 Variational Data Assimilation 340
13.5.1.2 Incremental 4D-Var 341
13.5.1.3 The Dual Formulation 341
13.5.1.4 Kalman Filter 342
13.5.1.5 Model Reduction 342
13.5.1.6 Error Subspace Statistical Estimation 343
13.5.1.7 Ensemble Methods 343
13.5.2 Covariance Modeling and Array Analysis 344
13.5.3 Validation of Error Models 345
13.5.4 Conditioning and Stability 346
13.6 Summary and Conclusions 347
13.7.1 Software and WWW Resources 350
References 350
Chapter-14 355
Adjoint Data Assimilation Methods 355
Abstract 355
14.1 Introduction 355
14.2 What Is an Adjoint Operator? 355
14.2.1 Spaces 356
14.2.2 Operator Adjoints 357
14.2.3 An Illustrative Example 358
14.2.3.1 The Linear Shallow Water Equations 358
14.2.3.2 The Linear Shallow Water Equations in the Presence of a Mean Circulation 360
14.3 Variational Data Assimilation 361
14.3.1 Notation 361
14.3.2 The Incremental Formulation 362
14.3.3 Primal Space 4D-Var 364
14.3.4 Dual Space 4D-Var 365
14.3.5 Computation of za 366
14.3.6 Strong Constraint Versus Weak Constraint 367
14.3.7 Inner- and Outer-Loops 368
14.4 Examples of 4D-Var for the California Current 369
14.4.1 The Regional Ocean Modeling System (ROMS) 369
14.4.2 ROMS 4D-Var 369
14.4.3 The California Current System 370
14.4.4 ROMS-CCS 4D-Var Configuration 371
14.4.4.1 Primal Versus Dual 4D-Var 372
14.4.4.2 The Control Vector Influence 375
14.4.4.3 Weak Constraint 4D-Var 376
14.4.5 4D-Var Diagnostics 377
14.4.5.1 Posterior Error 378
14.4.5.2 Observation Impacts 379
14.5 Summary 381
References 382
Chapter-15 384
Ensemble-Based Data Assimilation Methods 384
Abstract 384
15.1 Introduction 384
15.2 Ensemble Data Assimilation Methods Derived From the Kalman Filter 385
15.3 Ensemble Generation and Forecast 387
15.4 Observational Update 389
15.5 Temporal Strategies 392
15.6 Conclusions 393
References 394
Part VI 397
Systems 397
Chapter-16 398
Overview Global Operational Oceanography Systems 398
Abstract 398
16.1 Introduction 398
16.2 Overview of GODAE OceanView Operational Oceanography Systems 399
16.3 The Key Functions of OO Systems 401
16.3.1 Observations, Model and Data Assimilation 401
16.3.1.1 Quality Input Data in Near Real-Time 401
16.3.1.2 Forcing Fields 403
16.3.1.3 Model Configurations 403
16.3.1.4 Efficient Assimilation Techniques 406
16.3.2 Product Generation and Quality Monitoring 407
16.4 Non Functional Aspects 408
16.4.1 Operational Resources 408
16.4.2 Research and Development 409
16.4.3 User Involvement 409
16.4.4 High Performance Computing Facility 409
16.4.5 Storage, Dissemination Capacity and Service Delivery 410
16.5 Conclusions 411
References 411
Chapter-17 413
Overview of Regional and Coastal Systems 413
Abstract 413
17.1 Introduction 414
17.2 Overview of Systems 417
17.2.1 Bluelink 417
17.2.2 MOVE/MRI.COM-WNP 418
17.2.3 JCOPE1,2 419
17.2.4 Kyoto University System 420
17.2.5 NMEFC System for Western North Pacific 421
17.2.6 CAS Preoperational System 421
17.2.7 YEOS 421
17.2.8 ESROM 422
17.3 Highlighted Examples 422
17.3.1 Successful Prediction of the Kuroshio Large Meander 422
17.3.2 Operational Forecast for 2008 Olympic Games 422
17.3.3 Prediction of Giant Jellyfishes 423
17.3.4 Reproducing the Model Transition of Coastal Waters off Shimokita Peninsula 424
17.3.5 Non-tidal Coastal Sea Level for Flood Warnings and Port Management in Australia 425
17.4 SST Predictability and Forecast Error Growth in China Marginal Seas 428
17.4.1 Circulation in China Marginal Seas and Model Bias 428
17.4.2 Hindcast Experiment 430
17.4.3 Hindcast Error Distributions 433
17.5 Summary and Outlook 435
References 437
Chapter-18 440
System Design for Operational Ocean Forecasting 440
Abstract 440
18.1 Introduction 440
18.2 Definitions 442
18.3 Applications 444
18.4 System Elements 447
18.5 Real-Time Observing System 449
18.5.1 In Situ—Profiles 449
18.5.2 Satellite SST 451
18.5.3 Satellite Altimetry 454
18.6 Real-Time Forcing System 459
18.7 Modelling 463
18.8 Data Assimilation 469
18.9 Initialization 472
18.10 Forecasting Cycle 475
18.11 System Performance 476
18.12 Conclusion 480
References 481
Chapter-19 486
Integrating Coastal Models and Observations for Studies of Ocean Dynamics, Observing Systems and Forecasting 486
Abstract 486
19.1 Introduction 486
19.2 Regional Ocean Modelling System 488
19.2.1 Dynamical and Numerical Core 488
19.2.2 Vertical Turbulence Closure 489
19.2.3 Forcing 490
19.2.3.1 Air-Sea Fluxes 490
19.2.3.2 River Inflows and Open Boundary Conditions 490
19.2.4 Sub-Models for Interdisciplinary Studies 491
19.3 ROMS Simulations of the New York Bight Region for LaTTE 492
19.3.1 Dispersal of the Plume During High River Discharge 492
19.3.2 Shelf-Wide Transport and Dispersal Pathways 496
19.3.3 Data Assimilation and Observing System Design 502
19.4 Processes and Dynamics for Further Study 505
19.4.1 Air-Sea and Wave-Current Interaction 505
19.4.2 Ecosystem-Optics and Heating Interaction 507
19.5 Summary 508
References 508
Chapter-20 512
Seasonal and Decadal Prediction 512
Abstract 512
20.1 Introduction 513
20.2 Predictability: What is the Source of Seasonal Prediction Skill? 515
20.3 Forecast Skill 517
20.4 Ensemble Prediction: Representing Uncertainty 518
20.5 Data Assimilation and Initialization 522
20.6 The Impact of Ocean Observations 528
20.7 Seasonal Prediction in Australia 531
20.8 Decadal Prediction 535
20.9 Summary 536
References 537
Part VII 542
Evaluation 542
Chapter-21 543
Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example 543
Abstract 543
21.1 Introduction 544
21.2 Dynamics of Gulf Stream Boundary Separation and Its Pathway to the East 545
21.2.1 Linear Model Simulation of the Gulf Stream 545
21.2.2 Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current (DWBC) on Gulf Stream Boundary Separation and Its Pathway to the East 547
21.2.3 Observational Evidence of Abyssal Currents in the Gulf Stream Region 553
21.2.4 Gulf Stream Separation and Pathway Dynamics, Part I: Abyssal Current Impact 555
21.2.5 Gulf Stream Boundary Separation as an Inertial Jet Following a Constant Absolute Vorticity (CAV) Trajectory 557
21.2.6 Gulf Stream Separation and Pathway Dynamics, Part II: Role of CAV Trajectories 560
21.2.7 Gulf Stream Separation and Pathway Dynamics, Part III: The Cooperative Interaction of Abyssal Currents and CAV Trajectories 560
21.3 Dynamical Evaluation of Gulf Stream Simulations by Eddy-Resolving Global and Basin-Scale OGCMs 561
21.3.1 Linear model Gulf Stream Simulations from Wind Stress Products Used for OGCMs in Sects. 21.3 and 21.4 564
21.3.2 Simulations with a Realistic Gulf Stream Pathway 566
21.3.3 Simulation with a Realistic Gulf Stream Pathway and Unrealistic Dynamics 571
21.3.4 Simulations with a Pathway That Overshoots the Observed Latitude 575
21.3.5 Simulation with Premature Separation from the Western Boundary 579
21.3.6 Simulations with a Pathway Segment too far South After Separation at Cape Hatteras 581
21.3.7 Gulf Stream Pathways and Variability Upstream of Separation at Cape Hatteras 586
21.4 Impact of Data Assimilation on Model Dynamics in the Gulf Stream Region 592
21.4.1 Interannually Forced Simulation with a Weak Gulf Stream 593
21.4.2 Interannually Forced Simulation with a Stronger Gulf Stream 595
21.4.3 Cooper-Haines Data Assimilation 597
21.4.4 MODAS Data Assimilation 598
21.4.5 A Comparison of Model Forecasts to Hindcast States 598
21.5 Summary and discussion 599
References 604
Chapter-22 608
Ocean Forecasting Systems: Product Evaluation and Skill 608
Abstract 608
22.1 Introduction 608
22.2 Statistical Concepts 609
22.2.1 Accuracy 610
22.2.2 Pattern 610
22.2.3 Skill 611
22.2.4 Summary Diagrams 612
22.3 Observations 613
22.4 Evaluating Ocean Analyses and Forecasts 614
22.4.1 Evaluating the Large-Scale Mean and Variability 615
22.4.2 Data Assimilation Statistics 617
22.4.3 Evaluation of Analyses and Forecasts Using Independent Data 619
22.4.4 Forecast Versus Analysis 623
22.4.5 Case Studies for Particular Applications 623
22.5 Summary and Conclusions 626
References 627
Chapter-23 629
Performance of Ocean Forecasting Systems—Intercomparison Projects 629
Abstract 629
23.1 Introduction 629
23.2 First Intercomparison Experiments 631
23.3 Evaluation and Intercomparison of Ocean Reanalysis 635
23.4 Intercomparison and Evaluation of Operational Ocean Forecasting System 639
23.4.1 Development of Operational Ocean Forecasting System Evaluation 639
23.4.2 Validation and Intercomparison Methodology 642
23.4.3 The GODAE Intercomparison Project 645
23.4.4 User Oriented Validation 648
23.5 Conclusion 649
References 649
Part VIII 652
Applications, Policies and Legal Frameworks 652
Chapter-24 653
Defence Applications of Operational Oceanography 653
Abstract 653
24.1 Introduction 653
24.2 Impacts of the Ocean on Operations 655
24.2.1 Anti-Submarine Warfare (ASW) 655
24.2.2 Amphibious Warfare 660
24.2.3 Mine Warfare 661
24.2.4 Submarine Operations 662
24.2.5 Search and Rescue (SAR) 662
24.2.6 Maritime Interdiction Operations 662
24.3 Forecast Methods—Their Strengths and Weaknesses 663
24.3.1 Climatology 663
24.3.2 Persistence 665
24.3.3 Deterministic Forecasts 666
24.3.4 Ensemble Forecasts 666
24.4 Naval Applications of Deterministic Forecasts 667
24.4.1 The BLUElink Global/Regional Model (OceanMAPS) 667
24.4.2 Relocatable Ocean Atmosphere Model (ROAM) 669
24.5 Summary 671
References 672
Chapter-25 674
Applications for Metocean Forecast Data—Maritime Transport, Safety and Pollution 674
Abstract 674
25.1 Introduction 674
25.2 Review of Meteorological and Ocean Forecast Models 676
25.2.1 BLUElink Ocean Model 676
25.2.2 NCOM Ocean Model 677
25.2.3 GFS Atmospheric Model 677
25.2.4 NOGAPS Atmospheric Model 677
25.3 Case Studies of the Operational Use of Meteorological and Ocean Forecast Datasets 678
25.3.1 Case Study 1—Pacific Adventurer 678
25.3.1.1 Oil Spill Forecast 678
25.3.1.2 Chemical Spill Forecast 679
25.3.2 Case Study 2—Montara Well Head Blowout 680
25.3.3 Case Study 3—MSC Lugano Stranding 681
25.4 Conclusions 682
25.5 Appendix 683
25.5.1 Spill Forecast Bulletin for Montara Incident Issued Midday 29-October-2009 for the Australian Maritime Safety Authority 683
References 686
Chapter-26 687
Marine Energy: Resources, Technologies, Research and Policies 687
Abstract 687
26.1 Introduction 687
26.2 Forms of Ocean Energy 688
26.3 Ocean Energy Resources 689
26.3.1 Wave Energy 689
26.3.2 Tidal Energy 691
26.3.2.1 Tidal Rise and Fall 691
26.3.2.2 Tidal Stream Energy 691
26.3.3 Ocean Currents 692
26.3.4 Ocean Thermal Energy 693
26.3.4.1 Ocean Thermal Energy Conversion (OTEC) 693
26.3.4.2 Submarine Geothermal Energy 693
26.3.5 Salinity Gradients 695
26.3.6 Marine Biomass 696
26.4 Ocean Energy Technologies 696
26.4.1 Classification of Ocean Energy Conversion Technologies 697
26.4.1.1 Wave, Tidal and Ocean Current Technologies 697
26.4.1.2 Chemical Potential of Seawater 698
26.4.1.3 Heat Potential of Seawater 699
26.4.1.4 Biological Production 700
26.4.2 Predictability of Ocean Energy 700
26.5 Environmental Impacts of Ocean Energy Converters 702
26.5.1 General Environmental Effects 702
26.5.1.1 Visual Impacts 703
26.5.1.2 Noise and Vibration 703
26.5.1.3 Hydrodynamics 703
26.5.2 Chemical Impacts 703
26.5.3 Impacts on Marine Biota 704
26.5.3.1 Hydrodynamics 704
26.5.3.2 Collision Risk 704
26.5.3.3 Noise and Vibration 704
26.5.3.4 Electromagnetic Fields 705
26.5.3.5 Summary 705
26.6 Space and Resource Allocation 705
26.7 Political Framework for Ocean Energy 706
26.7.1 Lifecycle Incentives for Ocean Energy 707
26.7.2 International Initiatives for Ocean Energy 707
26.7.3 International Initiatives 707
26.7.3.1 Ocean Energy Systems Implementing Agreement (OES-IA) 708
26.7.3.2 IEC’s Technical Committee 114 709
26.7.4 European Initiatives 709
26.7.4.1 EquiMar and Predecessors 709
26.7.4.2 Waveplam 710
26.8 Trends and Growth in Ocean Energy 710
References 711
Chapter-27 713
Application of Ocean Observations & Analysis: The CETO Wave Energy Project
Abstract 713
27.1 Hardware Overview 713
27.2 Installation Water Depth 715
27.3 Prospective Site Identification 716
27.4 First Installation Site: Garden Island, WA 716
27.5 Specific Uses of Ocean Observations & Analysis
27.6 Limitations to the Use of Model Data 719
27.7 Pragmatic Approaches in a Commercial Context 720
References 721
Chapter-28 722
International Marine Environmental Law (Oil Pollution) 722
Abstract 722
28.1 United Nations Convention on the Law of the Sea (UNCLOS) 723
28.2 International Convention on Civil Liability for Oil Pollution Damage (CLC) 724
28.3 International Convention on the Prevention of Marine Pollution by the Dumping of Wastes or Other Matter (London Convention) 725
28.4 International Convention for the Prevention of Pollution of the Sea by Oil (OILPOL) 726
28.4.1 Torrey Canyon 726
28.5 International Convention for the Prevention of Pollution from Ships (MARPOL) 727
28.5.1 Argo Merchant 728
28.5.2 Amoco Cadiz 728
28.5.3 Exxon Valdez 728
28.5.4 Erika 729
28.5.5 Prestige 730
28.6 Conclusion 730
Index 732

Erscheint lt. Verlag 11.4.2011
Zusatzinfo XVI, 746 p. 130 illus., 100 illus. in color.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Technik
Schlagworte atmosphere-wave-ocean forecasting • Climate change impacts • Data Assimilation • ocean forecasting • ocean modelling • ocean observing systems
ISBN-10 94-007-0332-5 / 9400703325
ISBN-13 978-94-007-0332-2 / 9789400703322
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 52,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich