Quality Research in Literacy and Science Education (eBook)

International Perspectives and Gold Standards
eBook Download: PDF
2008 | 2009
XXIX, 666 Seiten
Springer Netherland (Verlag)
978-1-4020-8427-0 (ISBN)

Lese- und Medienproben

Quality Research in Literacy and Science Education -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Statistical models attempt to describe and quantify relationships between variables. In the models presented in this chapter, there is a response variable (sometimes called dependent variable) and at least one predictor variable (sometimes called independent or explanatory variable). When investigating a possible cause-and-effect type of relationship, the response variable is the putative effect and the predictors are the hypothesized causes. Typically, there is a main predictor variable of interest; other predictors in the model are called covariates. Unknown covariates or other independent variables not controlled in an experiment or analysis can affect the dependent or outcome variable and mislead the conclusions made from the inquiry (Bock, Velleman, & De Veaux, 2009). A p value (p) measures the statistical significance of the observed relationship; given the model, p is the probability that a relationship is seen by mere chance. The smaller the p value, the more confident we can be that the pattern seen in the data 2 is not random. In the type of models examined here, the R measures the prop- tion of the variation in the response variable that is explained by the predictors 2 specified in the model; if R is close to 1, then almost all the variation in the response variable has been explained. This measure is also known as the multiple correlation coefficient. Statistical studies can be grouped into two types: experimental and observational.
Statistical models attempt to describe and quantify relationships between variables. In the models presented in this chapter, there is a response variable (sometimes called dependent variable) and at least one predictor variable (sometimes called independent or explanatory variable). When investigating a possible cause-and-effect type of relationship, the response variable is the putative effect and the predictors are the hypothesized causes. Typically, there is a main predictor variable of interest; other predictors in the model are called covariates. Unknown covariates or other independent variables not controlled in an experiment or analysis can affect the dependent or outcome variable and mislead the conclusions made from the inquiry (Bock, Velleman, & De Veaux, 2009). A p value (p) measures the statistical significance of the observed relationship; given the model, p is the probability that a relationship is seen by mere chance. The smaller the p value, the more confident we can be that the pattern seen in the data 2 is not random. In the type of models examined here, the R measures the prop- tion of the variation in the response variable that is explained by the predictors 2 specified in the model; if R is close to 1, then almost all the variation in the response variable has been explained. This measure is also known as the multiple correlation coefficient. Statistical studies can be grouped into two types: experimental and observational.

Section I: General Introduction. 1. Education Research Meets the 'Gold Standard': Evaluation, Research Methods, and Statistics after No Child Left Behind; M. C. Shelley et al.
Section II: Setting the Agenda: Science Education and Science-based Research
2. Why 'Gold Standard' Needs Another 's': Results from the Gold Standard(s) in Science and Literacy Education Research Conference; L. D. Yore, P. Boscolo. 3. Research and Practice: A Complex Relationship? R. Millar, J. Osborne. 4. Moving Beyond the Gold Standard: Epistemological and Ontological Considerations of Research in Science Literacy; D. E. Alvermann, C. A. Mallozzi. 5. Longitudinal Studies into Science Learning—Methodological Issues; R. W. Tytler. 6. An International Perspective of Monitoring Educational Research Quality: Commonalities and Differences; R. K. Coll et al. 7. Considering Research Quality and Applicability through the Eyes of Stakeholders; D. V. Hayward, L. M. Phillips.
Section III: Curriculum and Pedagogy. 8. Researching Effective Pedagogies for Developing the Literacies of Science: Some Theoretical and Practical Considerations; V. Prain. 9. Pedagogy, Implementation, and Professional Development for Teaching Science Literacy: How Students and Teachers Know and Learn; L. A. Norton-Meier et al. 10. Approaching Classroom Realities: The Use of Mixed Methods and Structural Equation Models in Science Education Research; M. Nieswandt, E. H. McEneaney. 11. Mixed-methodology Research in Science Education: Opportunities and Challenges in Exploring and Enhancing Thinking Dispositions; T. Levin, T. Wagner. 12. New Directions in Science Literacy Education; W. Saul, B.Hand.
Section IV. Statistics, Research Methods, and Science Literacy. 13. Multilevel Modeling with HLM: Taking A Second Look at PISA; J. O. Anderson et al. 14. Methods from Item Response Theory: Going Beyond Traditional Validity and Reliability in Standardizing Assessments; A.G. Froelich. 15. Confounding in Observational Studies using Standardized Test Data: Careful Disentanglement of Statistical Interpretations and Explanations; M. C. Meyer. 16. Predicting Group Membership Using National Assessment of Educational Progress (NAEP) Mathematics Data; D. Walker, S. Mohammed.17. Incorporating Exploratory Methods using Dynamic Graphics into Multivariate Statistics Classes: Curriculum Development; D. Cook. 18. Approaches to Broadening the Statistics Curricula; D. Nolan, D. Temple Lang. 19. Dr. Fox Rocks: Using Data Mining Techniques to Examine Student Ratings of Instruction; M. C. Wang et al. 20. Relating Process Execution to Writing, Reading, and Output Quality of Text: Considering Learner and Task Characteristics; H. van den Bergh et al. 21. Can We Make a Silk Purse from a Sow’s Ear? D. J. Mundfrom.
Section V: Public Policy and 'Gold Standard(s)' Research. 22. Speaking Truth to Power with Powerful Results: Impacting Public Awareness and Public Policy; M. C. Shelley. 23. Funding Patterns and Priorities: An International Perspective; Hsiao-Ching She et al. 24. Research Ethics Boards and the Gold Standard(s) in Science and Literacy Education Research; R. J. Anthony et al. 25. Data Sharing: Disclosure, Confidentiality, and Security; D. J. Dude et al. 26. Stitching the Pieces Together to Reveal the

Erscheint lt. Verlag 30.12.2008
Zusatzinfo XXIX, 666 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Schulbuch / Wörterbuch Lektüren / Interpretationen
Schulbuch / Wörterbuch Wörterbuch / Fremdsprachen
Geisteswissenschaften Sprach- / Literaturwissenschaft Sprachwissenschaft
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften
Sozialwissenschaften Pädagogik Bildungstheorie
Sozialwissenschaften Politik / Verwaltung
Sozialwissenschaften Soziologie Empirische Sozialforschung
Technik
Schlagworte Education • Educational Research • Education research • Evaluation • evidence-based practice • gold standard • Mathematics • mixed-methods research • No Child Left Behind • Pisa • Public Policy • randomized controlled trails
ISBN-10 1-4020-8427-7 / 1402084277
ISBN-13 978-1-4020-8427-0 / 9781402084270
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
inklusive eLearning-Kurs mit über 7.000 Aufgaben. Regeln, Anwendung, …

von Uwe Dethloff; Horst Wagner

eBook Download (2023)
UTB GmbH (Verlag)
64,99