Catalysts for Upgrading Heavy Petroleum Feeds -  Edward Furimsky

Catalysts for Upgrading Heavy Petroleum Feeds (eBook)

eBook Download: PDF | EPUB
2007 | 1. Auflage
404 Seiten
Elsevier Science (Verlag)
978-0-08-054931-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
180,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book provides the most up-to-date information on testing and development of hydroprocessing catalysts with the aim to improve performance of the conventional and modified catalysts as well as to develop novel catalytic formulations. Besides diverse chemical composition, special attention is devoted to pore size and pore volume distribution of the catalysts. Properties of the catalysts are discussed in terms of their suitability for upgrading heavy feeds. For this purpose atmospheric residue was chosen as the base for defining other heavy feeds which comprise vacuum gas oil, deasphalted oil and vacuum residues in addition to topped heavy crude and bitumen. Attention is paid to deactivation with the aim to extent catalyst life during the operation. Into consideration is taken the loss of activity due to fouling, metal deposition, coke formed as the result of chemical reaction and poisoning by nitrogen bases. Mathematical models were reviewed focussing on those which can simulate performance of the commercial operations. Configurations of hydroprocessing reactors were compared in terms of their capability to upgrade various heavy feeds providing that a suitable catalyst was selected. Strategies for regeneration, utilization and disposal of spent hydroprocesing catalysts were evaluated. Potential of the non-conventional hydroprocessing involving soluble/dispersed catalysts and biocatalysts in comparison with conventional methods were assessed to identify issues which prevent commercial utilization of the former. A separate chapter is devoted to catalytic dewaxing because the structure of dewaxing catalysts is rather different than that of hydroprocessing catalysts, i.e., the objective of catalytic dewaxing is different than that of the conventional hydroprocessing, The relevant information in the scientific literature is complemented with the Patent literature covering the development of catalysts and novel reactor configurations.
Separate chapter was added to distinguish upgrading capabilities of the residues catalytic cracking processes from those employing hydroprocessing. Upper limits on the content of carbon residue and metals in the feeds which can still be upgraded by the former processes differ markedly from those in the feeds which can be upgraded by hydroprocessing. It is necessary that the costs of modifications of catalytic cracking processes to accommodate heavier feeds are compared with that of hydroprocessing methods.
Objective of the short chapter on upgrading by carbon rejecting processes was to identify limits of contaminants in heavy feeds beyond which catalytic upgrading via hydroprocessing becomes uneconomical because of the costs of catalyst inventory and that of reactors and equipment.

- Comprehensive and most recent information on hydroprocessing catalysts for upgrading heavy petroleum feeds.
- Compares conventional, modified and novel catalysts for upgrading a wide range of heavy petroleum feeds.
- Comparison of conventional with non-conventional hydroprocessing, the latter involving soluble/dispersed catalysts and biocatalysts.
- Development and comparison of mathematical models
to simulate performance of catalytic reactors including most problematic feeds.
- Residues upgrading by catalytic cracking in comparison to hydroprocessing.
The book provides the most up-to-date information on testing and development of hydroprocessing catalysts with the aim to improve performance of the conventional and modified catalysts as well as to develop novel catalytic formulations. Besides diverse chemical composition, special attention is devoted to pore size and pore volume distribution of the catalysts. Properties of the catalysts are discussed in terms of their suitability for upgrading heavy feeds. For this purpose atmospheric residue was chosen as the base for defining other heavy feeds which comprise vacuum gas oil, deasphalted oil and vacuum residues in addition to topped heavy crude and bitumen. Attention is paid to deactivation with the aim to extent catalyst life during the operation. Into consideration is taken the loss of activity due to fouling, metal deposition, coke formed as the result of chemical reaction and poisoning by nitrogen bases. Mathematical models were reviewed focussing on those which can simulate performance of the commercial operations. Configurations of hydroprocessing reactors were compared in terms of their capability to upgrade various heavy feeds providing that a suitable catalyst was selected. Strategies for regeneration, utilization and disposal of spent hydroprocesing catalysts were evaluated. Potential of the non-conventional hydroprocessing involving soluble/dispersed catalysts and biocatalysts in comparison with conventional methods were assessed to identify issues which prevent commercial utilization of the former. A separate chapter is devoted to catalytic dewaxing because the structure of dewaxing catalysts is rather different than that of hydroprocessing catalysts, i.e., the objective of catalytic dewaxing is different than that of the conventional hydroprocessing, The relevant information in the scientific literature is complemented with the Patent literature covering the development of catalysts and novel reactor configurations.Separate chapter was added to distinguish upgrading capabilities of the residues catalytic cracking processes from those employing hydroprocessing. Upper limits on the content of carbon residue and metals in the feeds which can still be upgraded by the former processes differ markedly from those in the feeds which can be upgraded by hydroprocessing. It is necessary that the costs of modifications of catalytic cracking processes to accommodate heavier feeds are compared with that of hydroprocessing methods.Objective of the short chapter on upgrading by carbon rejecting processes was to identify limits of contaminants in heavy feeds beyond which catalytic upgrading via hydroprocessing becomes uneconomical because of the costs of catalyst inventory and that of reactors and equipment.- Comprehensive and most recent information on hydroprocessing catalysts for upgrading heavy petroleum feeds.- Compares conventional, modified and novel catalysts for upgrading a wide range of heavy petroleum feeds.- Comparison of conventional with non-conventional hydroprocessing, the latter involving soluble/dispersed catalysts and biocatalysts. - Development and comparison of mathematical models to simulate performance of catalytic reactors including most problematic feeds.- Residues upgrading by catalytic cracking in comparison to hydroprocessing.

Cover 1
Copyright Page 5
Table of Contents 6
Preface 12
List of Acronyms 16
Chapter 1 Introduction 18
Chapter 2 Properties of Heavy Feeds 22
2.1 Composition of heavy feeds 27
2.2 Metals in heavy feeds 34
2.3 Physical properties 37
Chapter 3 Properties of Catalysts for Hydroprocessing of Heavy Feeds 40
3.1 Chemical composition 40
3.2 Physical properties 44
3.2.1 Surface properties 45
3.2.2 Quantification of diffusion phenomena 49
3.3 Mechanical properties 55
3.4 Effect of shape and size of catalyst particles 56
Chapter 4 Selection of Reactors for Hydroprocessing Research 60
4.1 Batch reactors 60
4.2 Continuous reactors 61
4.2.1 Fixed bed reactors 61
4.2.2 Continuous stir tank reactors 63
Chapter 5 Development and Testing of Catalysts 66
5.1 Conventional catalysts 66
5.1.1 Effect of surface properties 67
5.1.2 Effect of particle size and shape 72
5.1.3 Design and testing of catalysts 75
5.1.3.1 VGOs and HGOs 76
5.1.3.2 Deasphalted oil 77
5.1.3.3 Atmospheric residues 79
5.1.3.4 Vacuum residues and heavy crudes 81
5.2 Modified conventional catalysts 88
5.2.1 Effect of alkali metals 88
5.2.2 Effect of phosphorus 89
5.2.3 Effect of borate 91
5.2.4 Effect of fluoride 92
5.2.5 Effect of support 93
5.2.5.1 VGOs and HGOs 94
5.2.5.1.1 Acidic supports 94
5.2.5.1.2 TiO2-containing supports 97
5.2.5.2 Deasphalted oil 97
5.2.5.3 Atmospheric residues 98
5.2.5.3.1 Carbon supports 98
5.2.5.3.2 Acidic supports 99
5.2.5.3.3 Novel .-Al2O3 supports 99
5.2.5.4 Vacuum residues and heavy crudes 100
5.2.5.4.1 Carbon-containing supports 100
5.2.5.4.2 Novel .-Al2O3 supports 101
5.2.5.4.3 Mixed oxides supports 102
5.3 Novel catalysts 107
5.3.1 Metal carbides, nitrides and phosphides 107
5.3.2 Transition metals containing catalysts 108
5.3.3 Carbon catalysts 109
Chapter 6 Hydroprocessing Reactions 112
6.1 Kinetics of hydroprocessing reactions 112
6.1.1 VGOs and HGOs 116
6.1.1.1 Kinetics of thiophenic heterorings 116
6.1.1.2 Overall kinetics 118
6.1.1.3 Lumped kinetics 120
6.1.2 Atmospheric residues 123
6.1.2.1 Lumped kinetics 123
6.1.2.2 Overall kinetics 123
6.1.3 Vacuum residues and heavy crudes 129
6.1.3.1 Overall kinetics 130
6.1.3.2 Lumped kinetics 134
6.2 Mechanism of hydroprocessing reactions 136
6.2.1 Reactions during hydroprocessing of VGOs and HGOs 136
6.2.2 Conversion of resins 140
6.2.3 Conversion of asphaltenes 143
6.2.3.1 Thermal effects 143
6.2.3.2 Involvement of active hydrogen 144
6.2.3.3 Structural transformations 147
6.2.4 Hydrodemetallization 149
Chapter 7 Catalyst Deactivation 158
7.1 Deactivation due to structural change of catalyst 161
7.2 Deactivation by coke and nitrogen bases 162
7.2.1 VGO and HGO 162
7.2.2 Asphaltenes and metals containing feeds 165
7.3 Combined effect of coke and metals on deactivation 167
7.3.1 Deasphalted oils 170
7.3.2 Residues and heavy crudes 171
7.3.2.1 Effect of feed origin and catalyst surface 172
7.3.2.2 Effect of temperature and H2 pressure 179
7.4 Effect of mechanical properties of catalyst on activity loss 184
7.5 Kinetics of catalyst deactivation 185
7.5.1 Deactivation by coke 186
7.5.2 Simultaneous deactivation by coke and metals 187
7.6 Mechanism of catalyst deactivation 192
7.6.1 Mechanism of coke formation 192
7.6.1.1 Chemical aspects of coke formation 192
7.6.1.1.1 Involvement of free radicals and carbocations 193
7.6.1.1.2 Characterization of feeds and coke 195
7.6.1.2 Feed compatibility aspects 201
7.6.1.3 Microscopic phenomena 204
7.6.2 Mechanism of metal deposition 206
7.6.2.1 Deposition of inorganic solids 206
7.6.2.2 Deposits of organometallic origin 207
7.6.2.2.1 Vanadium-containing deposits 208
7.6.2.2.2 Nickel-containing deposits 210
7.6.2.2.3 Mixed deposits 211
7.7 Development of models for predicting catalyst deactivation 212
7.7.1 Modeling on catalyst activity level 213
7.7.2 Modeling on catalyst particle level 216
7.7.3 Modeling on reactor level 220
Chapter 8 Selection of Catalysts for Commercial Hydroprocessing Reactors 234
8.1 Fixed bed reactors systems 236
8.2 Commercial processes employing fixed bed reactors 239
8.2.1 Mild hydrocracking process 239
8.2.2 Unibon process 240
8.2.3 HYVAHL process 241
8.2.4 Atmospheric residue desulfurization (ARDS) process 242
8.3 Moving bed reactors 244
8.3.1 QCR reactor 245
8.3.2 Bunker reactor 245
8.4 Ebullated bed reactors 246
8.5 Slurry reactors using low-cost solids 249
8.6 Comparison of hydroprocessing reactors 251
Chapter 9 Patent Literature on Hydroprocessing Catalysts and Reactors 254
9.1 Catalyst development 254
9.1.1 Conventional catalysts 254
9.1.2 Conventional modified catalysts 257
9.1.2.1 Effect of additives 257
9.1.2.2 Effect of supports 258
9.1.3 Novel supports and catalysts 259
9.2 Configurations of catalytic reactors and systems 260
9.2.1 Guard chambers and materials 260
9.2.2 Mixed layer and multiple bed systems 261
9.2.3 Countercurrent systems 263
9.2.4 Multistage systems 264
Chapter 10 Spent Hydroprocessing Catalysts 268
10.1 Regeneration 268
10.1.1 Oxidative regeneration 269
10.1.2 Reductive regeneration 274
10.1.3 Regeneration by attrition/abrasion 275
10.2 Rejuvenation 276
10.2.1 Organic agents 277
10.2.2 Inorganic agents 279
10.2.3 Supercritical extraction 280
10.3 Metal reclamation 280
10.3.1 Leaching of metals 281
10.3.2 Roasting treatments 283
10.3.3 Chlorination 284
10.3.4 Other methods 284
10.3.5 Separation of metals from solution 285
10.4 Other potential uses of spent hydroprocessing catalysts 287
10.5 Disposal and storage 288
Chapter 11 Hydroprocessing of VGO and DAO for Production of Lubricants 290
11.1 Catalytic dewaxing 292
11.2 Hydrogenation of VGO/DAO for lube base oil 296
11.3 Design of dewaxing catalysts 297
11.4 Catalysts and catalytic systems in patent literature 298
11.4.1 Catalysts for controlling cold flow properties and VI 299
11.4.1.1 Zeolite-containing catalysts 299
11.4.1.2 Non-zeolitic catalysts 302
11.4.2 Process configurations 303
11.4.2.1 Combinations of extraction and catalytic processes 303
11.4.2.2 Catalytic processes 304
11.5 Spent catalysts from dewaxing 306
Chapter 12 Non-Conventional Catalytic Upgrading of Heavy Feeds 308
12.1 Down-hole upgrading 308
12.2 Processes using dissolved/dispersed catalysts 310
12.2.1 Soluble catalysts 312
12.2.1.1 Oil soluble precursors 312
12.2.1.2 Water soluble precursors 314
12.2.2 Finely dispersed catalysts 314
12.2.3 Recovery of dispersed/dissolved catalysts 317
12.3 Bio-catalytic upgrading of heavy feeds 317
Chapter 13 Residues Upgrading by Catalytic Cracking 322
13.1 Catalytic cracking processes 323
13.1.1 FCC/RFCC process 323
13.1.1.1 Effect of delta-coke 326
13.1.1.2 Effect of feed properties 327
13.1.1.2.1 Classification of feeds for RFCC 328
13.1.1.2.2 Pretreatment of feeds for RFCC 329
13.1.2 Asphalt residue treatment (ART) process 331
13.2 FCC/RFCC catalysts 332
13.2.1 Structure of catalysts 332
13.2.2 Selection of catalysts for RFCC 336
13.2.3 Deactivation/regeneration of RFCC catalysts 337
13.2.3.1 Effect of coke 338
13.2.3.2 Effect of metals 339
13.3 Emissions from RFCC process 341
13.3.1 Gaseous emissions 341
13.3.1.1 CO emissions 341
13.3.1.2 SOX emissions 341
13.3.1.3 NOX emissions 343
13.3.2 Solid emissions 345
13.3.2.1 Properties 345
13.3.2.2 Disposal and utilization 346
13.4 Patent literature 346
13.4.1 Metal passivation 347
13.4.2 Sulfur removal during FCC 348
13.4.3 Catalysts for CO and NOX emission control 349
Chapter 14 Carbon-Rejecting Processes 352
14.1 Thermal processes 352
14.1.1 Visbreaking and hydrovisbreaking 354
14.1.2 Coking 354
14.1.2.1 Delayed coking process 356
14.1.2.2 Fluid-flexi-coking process 356
14.1.2.3 EUREKA process 357
14.2 Carbon rejection by deasphalting 357
Chapter 15 Uncommon Methods for Upgrading Heavy Feeds 362
Chapter 16 Conclusions and Future Perspectives 364
References 370
Index 396

Erscheint lt. Verlag 12.9.2007
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Technische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-054931-4 / 0080549314
ISBN-13 978-0-08-054931-6 / 9780080549316
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 8,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95