Variational and Quasi-Variational Inequalities in Mechanics (eBook)
XIII, 337 Seiten
Springer Netherland (Verlag)
978-1-4020-6377-0 (ISBN)
The essential aim of this book is to consider a wide set of problems arising in the mathematical modeling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities and their transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems.
The variational method is a powerful tool to investigate states and processes in technical devices, nature, living organisms, systems, and economics. The power of the variational method consists in the fact that many of its sta- ments are physical or natural laws themselves. The essence of the variational approach for the solution of problems rel- ing to the determination of the real state of systems or processes consists in thecomparisonofclosestates.Theselectioncriteriafortheactualstatesmust be such that all the equations and conditions of the mathematical model are satis?ed. Historically, the ?rst variational theory was the Lagrange theory created to investigate the equilibrium of ?nite-dimensional mechanical systems under holonomic bilateral constraints (bonds). The selection criterion proposed by Lagrange is the admissible displacement principle. In accordance with this principle, the work of the prescribed forces (supposed to be constant) on in?nitesimally small, kinematically admissible (virtual) displacements is zero. It is known that equating the virtual work performed for potential systems to zero is equivalent to the stationarity conditions for the total energy of the system. The transition from bilateral constraints to unilateral ones was performed by O. L. Fourier. Fourier demonstrated that the virtual work on small dist- bances of a stable equilibrium state of a mechanical system under unilateral constraints must be positive (or, at least, nonnegative). Therefore, for such a system the corresponding mathematical model is reduced to an inequality and the problem becomes nonlinear.
1. Notation and Basics:
1.1. Notations and Conventions; 1.2. Functional spaces; 1.3. Bases and complete systems. Existence theorem; 1.4. Trace Theorem; 1.5. The laws of thermodynamics;
2. Variational Setting of Linear Steady-state Problems:
2.1. Problem of the equilibrium of system with a finite number of degrees of Freedom; 2.2. Equilibrium of the simplest continuous systems governed by ordinary differential Equations; 2.3. 3D and 2D problems on the equilibrium of linear elastic bodies; 3.4. Positive definiteness of the potential energy of linear systems;
3.Variational Theory for Nonlinear Smooth Systems:
3.1. Examples of nonlinear systems; 3.2. Differentiation of operators and functionals; 3.3. Existence and uniqueness theorems of the minimal point of a functional; 3.4. Condition for the potentiality of an operator; 3.5. Boundary value problems in the Hencky-Ilyushin theory of plasticity without discharge; 3.6. Problems in the elastic bodies theory with finite displacements and strain;
4. Unilateral Constraints and Non-Differentiable Functionals:
4.1. Introduction: systems with finite degrees of freedom; 4.2. Variational methods in contact problems for deformed bodies without friction; 4.3. Variational method in contact problem with friction;
5. The Transformation of Variational Principles:
5.1. Friedrichs Transformation; 5.2. Equilibrium, mixed and hybrid variational principles in the theory of elasticity; 5.3. The Young-Fenchel-Moreau duality transformation; 5.4. Applications of duality transformations in contact problems;
6. Non-Stationary Problems and Thermodynamics:
6.1. Traditional principles and methods; 6.2. Gurtin’s method; 6.3. Thermodynamics and mechanics of the deformed solids; 6.4. The variational theory of adhesion and crack initiation;
7. Solution Methods and Numerical implementation:
7.1. Frictionless contact problems: finite element method (FEM); 7.2. Friction contact problems: boundaryelement method (BEM);
8. Concluding Remarks:
8.1. Modelling. Identification problem. Optimization; 8.2. Development of the contact problems with friction, wear and adhesion; 8.3. Numerical implementation of the contact interaction phenomena;
References; Index.
Erscheint lt. Verlag | 4.9.2007 |
---|---|
Reihe/Serie | Solid Mechanics and Its Applications | Solid Mechanics and Its Applications |
Zusatzinfo | XIII, 337 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | 3D • Adhesion • Construction • Contact Problems • Continuum Mechanics • Development • Friction • Mathematical Modeling • Mechanics • Mechanics of Materials • Modeling • Modelling • Numerical and Computational Methods in Engineering • numerical implementation • Operator • Optimization • quality • thermodynamics • Transformation • variational method |
ISBN-10 | 1-4020-6377-6 / 1402063776 |
ISBN-13 | 978-1-4020-6377-0 / 9781402063770 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich