Light, Water, Hydrogen (eBook)

The Solar Generation of Hydrogen by Water Photoelectrolysis
eBook Download: PDF
2007 | 2008
XXII, 546 Seiten
Springer US (Verlag)
978-0-387-68238-9 (ISBN)

Lese- und Medienproben

Light, Water, Hydrogen -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the field of solar production of hydrogen by water photo-splitting (photoelectrolysis) using semiconductor photoanodes. The emphasis of the discussion is on the use of nanotechnology in the field. The theories behind photocatalysis and photoelectrochemical processes responsible for hydrogen production are given in detail. This provides a state-of-the-art review of the semiconductor materials and methods used for improving the efficiency of the processes. The book also gives an account of the techniques used for making the nanostructures.



Craig A. Grimes received B.S. degrees in Electrical Engineering and Physics from the Pennsylvania State University in 1984, and the Ph.D. degree in Electrical and Computer Engineering from the University of Texas at Austin in 1990.  In 1990 he joined the Lockheed Palo Alto Research Laboratory where he worked on artificial dielectric structures.  From 1994 to 2001 Dr. Grimes was a member of the Electrical and Computer Engineering Department at the University of Kentucky, where he was the Frank J. Derbyshire Professor.  He is currently a Professor at the Pennsylvania State University, University Park.  His research interests include solar generation of hydrogen by water photoelectrolysis, remote query chemical and environmental sensors, nano-dimensional metal-oxide thin film architectures, and propagation and control of electromagnetic energy.  He has contributed over 150 archival journal publications, eight book chapters, and over fifteen patents.  He is Editor-in-Chief of Sensor Letters, co-author of the book The Electromagnetic Origin of Quantum Theory and Light published by World Scientific (2nd Edition, 2005), and Editor of The Encyclopedia of Sensors to be published by American Scientific Publishing in 2005.
In addition to domestic animals the earliest records of mankind indicate that slavery, until the use of coal became widespread, has always been a significant aspect, or part, of nearly every society. Consider for example ancient Attica (Greece), in which 115,000 out of a total population of 315,000 were slaves [1]. For the lucky rulers slaves represented power, Joule/second or Watt. On a steady state basis a healthy adult generates about 100 Watts, or 100 J/s, while a highly conditioned endurance athlete can generate about 300 W for perhaps an hour. Today we obtain our energy from fossil fuels, that magical brew of latent-heat chemistry that allows us to run the world without having to rely on people or domestic animal power. We owe much if not all of modern civilization to fossil fuels, no more than stored solar energy, which provide the 40-plus Terawatts that annually powers the ? 7,000,000,000 people on this planet, with our fossil fuel burn rate growing to accommodate the annual increase of some additional 100,000,000 or so souls. The foundation of modern society is a pile (lake) of priceless, irreplaceable fossil fuel that, by any measure of the energy you get and what you pay, is all intents free, and being virtually free we have and continue to burn our way through it as fast as we possibly can. It is the tragedy of the (fossil fuel) commons.

Craig A. Grimes received B.S. degrees in Electrical Engineering and Physics from the Pennsylvania State University in 1984, and the Ph.D. degree in Electrical and Computer Engineering from the University of Texas at Austin in 1990.  In 1990 he joined the Lockheed Palo Alto Research Laboratory where he worked on artificial dielectric structures.  From 1994 to 2001 Dr. Grimes was a member of the Electrical and Computer Engineering Department at the University of Kentucky, where he was the Frank J. Derbyshire Professor.  He is currently a Professor at the Pennsylvania State University, University Park.  His research interests include solar generation of hydrogen by water photoelectrolysis, remote query chemical and environmental sensors, nano-dimensional metal-oxide thin film architectures, and propagation and control of electromagnetic energy.  He has contributed over 150 archival journal publications, eight book chapters, and over fifteen patents.  He is Editor-in-Chief of Sensor Letters, co-author of the book The Electromagnetic Origin of Quantum Theory and Light published by World Scientific (2nd Edition, 2005), and Editor of The Encyclopedia of Sensors to be published by American Scientific Publishing in 2005.

Foreword 5
Preface 12
Acknowledgment 14
Contents 15
Chapter 1 FROM HYDROCARBONS TO HYDROGEN: TOWARDS A SUSTAINABLE FUTURE 21
1.1 Introduction 21
1.2 Hydrogen: A Historical Perspective 27
1.3 Renewable Energy and Hydrogen 30
1.4 The Energy Carriers: Hydrogen or Electricity? 32
1.5 Hydrogen as a Chemical Fuel 35
1.6 The Hydrogen Economy 37
1.7 Hydrogen Production [20] 38
1.8 Hydrogen and Transportation 44
1.9 Environmental Effects of Hydrogen 48
1.10 Hydrogen Storage 48
1.11 Hydrogen Safety 49
References 50
Chapter 2 HYDROGEN GENERATION BY WATER SPLITTING 54
2.1 Introduction 54
2.2 Hydrogen Production By Water Electrolysis 54
2.3 Hydrogen Production by Thermochemical Water- Splitting 71
2.4 Hydrogen Production By Water Biophotolysis 86
2.5 Other Techniques for H2 production via Water Splitting 103
References 112
Chapter 3 PHOTOELECTROLYSIS 133
3.1 General Description of Photoelectrolysis 133
3.3 Types of Photoelectrochemical Devices 141
3.4 Photoelectrolysis Principles 143
3.5 Photoelectrochemical Cell Band Model 170
3.6 Efficiency of Water Splitting in a Photoelectrochemical Cell 175
References 197
Chapter 4 OXIDE SEMICONDUCTING MATERIALS AS PHOTOANODES 209
4.1 Introduction 209
4.2 Photoanode Reaction Mechanisms 210
4.3 General Description of Oxide Semiconductor Photoanodes 214
4.4 Single Crystal Materials as Photoanodes 217
4.5 Polycrystalline Photoanode Materials 224
4.6 Thin Film Photoanode Materials 227
4.7 Nanocrystalline and Nanoporous Thin Film Materials as Photoanodes 237
4.8 Quantum-size Effects in Nanocrystalline Semiconductors 249
References 260
Chapter 5 OXIDE SEMICONDUCTORS: NANO- CRYSTALLINE, TUBULAR AND POROUS SYSTEMS 274
5.1 Introduction 274
5.2 Synthesis of Nanotubular Oxide Semiconductors 276
5.3 Fabrication of Titania Nanotube Arrays by Anodization 285
5.4 Doped Titania Nanotube Arrays 314
5.5 Material Properties 319
5.6 Optical Properties of Titania Nanotubes Arrays 328
5.7 Photoelectrochemical and Water Photolysis Properties 340
5.8 Ti-Fe-O Nanotube Array Films for Solar Spectrum Water Photoelectrolysis 355
References 370
Chapter 6 OXIDE SEMICONDUCTORS: SUSPENDED NANOPARTICLE SYSTEMS 387
6.1 Introduction 387
6.2 Nanoparticle-Based Photocatalytic Water Splitting 390
6.3 Nanoparticle Synthesis Techniques 392
6.4 Synthesis of Complex Oxide Semiconductors 401
6.5 Design of Oxide Semiconductors 403
6.6 Conclusions and Future Prospects 426
References 427
Chapter 7 NON- OXIDE SEMICONDUCTOR NANOSTRUCTURES 443
7.1 General Description of Non-Oxide Semiconductors 443
7.2 General Synthesis Techniques of Non-Oxide Semiconductors 449
7.3 Non-Oxide Photoelectrode Systems and Water Photoelectrolysis 457
7.4 Non-oxide Suspended Particle Systems and Direct Water Splitting 471
7.5 Concluding Remarks 481
References 481
Chapter 8 PHOTOVOLTAIC - ELECTROLYSIS CELLS 500
8.1 Introduction 500
8.2 General Description of Solar Cell Technology 501
8.3 PV-Electrolysis Systems for Hydrogen Production [ 1- 34,41,43,87- 92] 514
8.4 Multi-junction PV Tandem Cells for Hydrogen Production [ 35- 39,44,45,93- 101] 516
References 522
Index 532

Erscheint lt. Verlag 3.12.2007
Zusatzinfo XXII, 546 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte conservation • Craig Grimes • Green • Grimes • Hydrogen • nanostructure • nanotechnology • non-oxides • Oomman Varghese • oxides • photoanodes • photocatalysis • photoelectrochemical • photoelectrolysis • Ranjan • semiconductor • Solar • Solar energy • spectrum • Sudhir Ran
ISBN-10 0-387-68238-4 / 0387682384
ISBN-13 978-0-387-68238-9 / 9780387682389
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 63,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99