Fundamentals of Space Biology (eBook)
XX, 376 Seiten
Springer New York (Verlag)
978-0-387-37940-1 (ISBN)
This book examines the effects of spaceflight at cellular and organism levels. Research on the effects of gravity - or its absence - and ionizing radiation on the evolution, development, and function of living organisms is presented in layman's terms. The book describes the benefits of space biology for basic and applied research to support human space exploration and the advantages of space as a laboratory for scientific, technological, and commercial research.
Fundamentals of Space Biology is the third textbook addressing Space Life Sciences in this Space Technology Library series. The first of these books focused on the psychological and psychiatric issues that affect people who live and work in space (Volume 16, Space Psychology and Psychiatry). The second book described the physiological and medical issues of living in a space environment (Volume 17, Fundamentals of Space Medicine). The objective of this third book was to review the effects of spaceflight on less complex biological systems, from single cells to animals and plants. Indeed, to better understand the changes at the function level, it is necessary to comprehend the changes at cellular and tissue levels. Studies of cell cultures, for example, allow the investigation of the indirect effects of gravity; i.e., those which occur not because of changes in the stimulation of dedicated gravity-sensing organs, but because of the new physical properties resulting from the reduction in gravitational force within the cell.
Contents 7
FOREWORD 14
ACKNOWLEDGMENTS 17
Chapter 1 INTRODUCTION TO SPACE BIOLOGY 18
1 SPACE BIOLOGY: WHAT IS IT? 18
1.1 Definitions 20
1.2 Objectives of Space Biology 23
1.3 Why Send Cells, Animals, and Plants in Space? 25
1.4 Justification for Animals Models 26
1.5 Frequently Asked Questions 28
2 GRAVITATIONAL BIOLOGY 30
2.1 Principles of Gravitational Biology 31
2.2 Cell Physics 33
2.3 Research Questions 37
3 DEVELOPMENTAL BIOLOGY 42
3.1 Principles of Development Biology 43
3.2 Genetic Analyses 48
3.3 Research Questions 50
4 PLANT BIOLOGY 53
4.1 Gravitropism 55
4.2 Development of Plants 55
4.3 Research Questions 56
5 RADIATION BIOLOGY 58
6 BIOTECHNOLOGY 60
6.1 Definition 60
6.2 Protein Crystal Analysis 61
6.3 Tissue and Cell Culture 62
6.4 New Technology 64
7 REFERENCES 66
Chapter 2 ANIMALS AND PLANTS IN SPACE 68
1 SPACEFLIGHT HISTORY 68
1.1 Preparation for Human Spaceflights 69
1.2 Beginning of Systematic Biological Investigations 74
1.3 Orbital Space Biology Laboratories 77
2 ORGANISMS STUDIED IN SPACE 79
3 MODEL ORGANISMS 81
3.1 Bacteria 82
3.2 Yeast 83
3.3 Nematodes 83
3.4 Drosophila 84
3.5 Mammals 85
3.6 Plants 88
4 THE CLASSICS 90
4.1 Amphibians 91
4.2 Fish 92
4.3 Avian 93
5 CONCLUSION 95
6 REFERENCES 96
Chapter 3 FACILITIES FOR GRAVITATIONAL BIOLOGY 98
1 TOOLS TO STUDY THE EFFECTS OF GRAVITY 98
1.1 Microgravity Facilities 99
1.2 Ground-Based Simulations 108
1.2.1 Clinostat and Bioreactor 109
1.2.2 Centrifuge 112
1.2.3 Muscle Unloading 113
2 ISSUES IN CONDUCTING SPACE BIOLOGY EXPERIMENTS 114
2.1 Choice of Species 114
2.2 Loading and Retrieval 115
2.3 Control Groups 116
3 SPACE BIOLOGY FACILITIES 118
3.1 Cell Biology Facilities 118
3.2 Animal Research Facilities 120
3.3 Plant Research Facilities 129
3.4 Multipurpose Facilities 131
4 BASELINE DATA COLLECTION FACILITIES 133
5 REFERENCES 136
Chapter 4 CELL BIOLOGY 138
1 INTRODUCTION 139
1.1 Prologue 139
1.2 History of Research on Cell Biology in Space 139
1.3 Phase One 141
1.4 Phase Two 142
1.5 Phase Three 144
1.6 Phase Four 144
2 CRITICAL QUESTIONS IN CELL BIOLOGY 145
2.1 Theoretical Considerations 146
2.2 Further Considerations 150
3 RESULTS OF SPACE EXPERIMENTS 151
3.1 Results by Kinds of Cells 152
3.2 Results by Cell Functions 165
3.3 Conclusions 178
4 SPACE RESEARCH IN CELL BIOLOGY: ISSUES 178
5 CELL BIOLOGY IN SPACE: OUTLOOK 180
6 REFERENCES 184
Chapter 5 ANIMAL DEVELOPMENT IN MICROGRAVITY 188
1 INTRODUCTION 189
2 FERTILIZATION AND EMBRYONIC DEVELOPMENT 190
2.1 Fertilization in Microgravity 191
2.2 Cleavage, Gastrulation, and Neurulation 193
2.3 Comparative Aspects of Embryonic Development 198
3 ORGAN DEVELOPMENT 199
3.1 Nervous System and Sensory Organs 199
3.2 Muscle and Bone Development 204
3.3 Respiratory Organ 211
3.4 Other Organs 213
4 FUNCTIONAL DEVELOPMENT 213
4.1 Neuronal Activity 214
4.2 Metabolic Activity 216
4.3 Behavior 219
4.4 Age-Related Microgravity Effects and Critical Periods 225
4.5 Pregnancy 228
4.6 Developmental Velocity 229
4.7 Longevity and Aging 230
4.8 Regeneration 231
5 RESEARCH PERSPECTIVES 233
5.1 Fertility during Long-Term Exposure 233
5.2 Is Gravity Genetically Coded? 234
6 REFERENCES 236
Chapter 6 PLANT DEVELOPMENT IN MICROGRAVITY 244
1 INTRODUCTION 244
2 THE RESPONSE OF PLANTS TO A CHANGE IN THE DIRECTION OF GRAVITY 246
2.1 Perception of Gravity in Plants 246
2.2 Transduction of Gravistimulus 250
2.3 Transmission of the Stimulus to the Reaction Zone 253
2.4 Differential Growth 254
3 GRAVITROPISM IN ACTUAL AND SIMULATED MICROGRAVITY 257
3.1 Estimate of Gravisensitivity 257
3.2 Statocyte Polarity 261
3.3 Gravisensors: Starch Content and Volume 263
3.4 Movement of the Organelles in Microgravity 264
3.5 Gravitropic Response in Microgravity 266
3.6 The Clinostat as a Tool for Studying Gravisensitivity 268
4 THE ROLE OF GRAVITY IN PLANT DEVELOPMENT 269
4.1 Plants and their Environments 269
4.2 The Role of Gravity in Plant Growth: Gravimorphism 273
4.3 Formation of the Cell Wall and Differentiation of the Supporting Tissues 274
5 DEVELOPMENT OF PLANTS IN ACTUAL AND SIMULATED MICROGRAVITY 276
5.1 Vegetative Development of Plants 276
5.2 Cell Wall in Microgravity 287
5.3 Plant Protoplasts and Embryogenesis 287
5.4 Conclusion on the Vegetative Phase of Plant Development in Microgravity 288
6 PLANTS AND THE SPACE ENVIRONMENT 290
6.1 Space Environment and the Organs Formation 290
6.2 Gas Composition of the Atmosphere in the Satellite 291
6.3 Gas Exchanges and the Reproductive Phase 292
7 CONCLUSIONS 293
7.1 Plant Gravitropism: What is Known and What is to be Done 293
7.2 Contribution of Space Experiments to our Knowledge of Plant Development 296
8 REFERENCES 299
Chapter 7 RADIATION BIOLOGY 308
1 INTRODUCTION 308
1.1 Radiation on Earth 308
1.2 Radiation in Low Earth Orbit 310
1.3 Radiation Beyond Low Earth Orbit 311
1.4 Radiation and Life 311
2 THE RADIATION FIELD IN SPACE 312
3 BASIC RADIATION BIOLOGY 315
3.1 Indirect Radiation Effects 316
3.2 Direct Radiation Effects 318
3.3 Radiation Units 319
3.4 Effects of Radiation Exposure on Humans 321
4 RESULTS OF RADIO-BIOLOGICAL STUDIES IN SPACE 323
4.1 Biological Effects of HZE Particles 323
4.2 Cosmic Radiation and Spaceflight Factors 332
5 RADIATION DOSIMETRY IN SPACE 337
5.1 Physical Radiation Monitoring 337
5.2 Biological Radiation Monitoring 341
6 RADIATION PROTECTION CONSIDERATIONS 343
6.1 LEO Missions 343
6.2 Exploration Missions 344
6.3 Research Needed 346
7 SUMMARY AND CONCLUSIONS 347
8 OPEN QUESTIONS AND OUTLOOK 348
9. REFERENCES 351
Chapter 8 BIOTECHNOLOGY IN SPACE 354
1 INTRODUCTION 354
2 CELL CULTURE 355
2.1 Objectives 355
2.2 Results of Ground and Space Experiments 355
2.3 Limitations 357
2.4 Research Facilities 358
2.5 Perspectives 360
3 PROTEIN CRYSTAL GROWTH 361
3.1 Objectives 361
3.2 Minimal Resolution 363
3.3 Results of Space Experiments 364
3.4 Limitations 368
3.5 Protein Growth Facilities on Board the ISS 369
3.6 Perspectives 370
4 SPACE COMMERCIALIZATION 373
4.1 Potential 373
4.2 Problems and Solutions 374
5 REFERENCES 377
INDEX 380
Erscheint lt. Verlag | 28.10.2006 |
---|---|
Reihe/Serie | Space Technology Library | Space Technology Library |
Zusatzinfo | XX, 376 p. 104 illus., 4 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie ► Zellbiologie |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Technik ► Fahrzeugbau / Schiffbau | |
Technik ► Luft- / Raumfahrttechnik | |
Schlagworte | Cells in Space • Evolution • Gravitational Biology • Life Sciences in Space • Space Biology • space exploration • Spaceflight • Space physiology • space technology textbook |
ISBN-10 | 0-387-37940-1 / 0387379401 |
ISBN-13 | 978-0-387-37940-1 / 9780387379401 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich